• 제목/요약/키워드: 변형 영상 정합

검색결과 64건 처리시간 0.022초

계층적 정합을 이용한 Visible Human 다리 Color 영상과 CT 영상의 정합 (Hierarchical Registration of Anatomical Color Images and CT images for the Visible Human Legs)

  • 김계현;이재준;김동성
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.265-267
    • /
    • 2003
  • 해부학적 구조의 변형이 존재하는 신체 부위를 정합하기 위하여 연구되는 non-rigid 정합 방법은 현재 의료 영상 분야에서 매우 중요한 주제이고 많은 연구가 이루어지고 있다. 본 논문에서는 Visible Human Color 단면 영상과 CT영상 사이에 존재하는 다리 모양의 변형을 정합 하기 위하여 계층적인 non-rigid 정합 방법을 제안하였다. 제안한 계층적 정합 방법은 영역 경계를 이용한 global rigid 정합으로 초기 변형 벡터를 찾고. 정합 할 영역을 sampling하여 local non-rigid 정합을 수행 한 후 결과를 interpolation하여 전체 영역에 대한 최종 정합 벡터를 계산하였다. 결과적으로 더욱 효율적이고 강력한 non-rigid 정합 결과를 얻을 수 있었다.

  • PDF

모멘트 및 free-form 변형기반 비선형 뇌영상 정합 (Non-liner brain image registration based on moment and free-form deformation)

  • 김민정;최유주;김명희
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2004년도 춘계학술발표대회논문집
    • /
    • pp.271-274
    • /
    • 2004
  • 영상정합을 통한 의료영상 분석방법들 중 동일환자에 대한 선형적 다중모달리티 정합이 널리 이용되고 있다. 그러나 실제적으로 여러 종류의 환자영상 취득이 어렵거나 해부학적 영상정보가 손실되는 경우가 적지 않다 본 논문에서는 표준 형상을 가지는 정상인 해부학적 뇌영상에 대한 환자 기능적 뇌영상의 정합방법을 제안한다. 먼저 두 영상간 모멘트 정보 매칭 및 초기선형 변환을 수행하고, 3차원 B zier 함수 기반 free-form 변형기법을 이용한 비선형 정합을 수행하여 정합 영상간 형상 차이를 최소화한다 제안방법은 환자 기능영상의 해부학적 분석 뿐 아니라 시술전-시술중 영상정합을 통한 영상유도시술에도 확장 적용될 수 있다.

  • PDF

변형된 Census 변환과 적응적 윈도우를 이용한 다해상도 스테레오 정합 (A Multiresolution Stereo Matching with Modified Census Transform and Adaptive Window)

  • 홍석근;조석제
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.572-575
    • /
    • 2012
  • 본 논문은 스테레오 시각에서 3차원 정보를 얻기 위해 변형된 Census 변환과 적응적 윈도우를 이용한 다해상도 스테레오 영상 정합 방법을 제안하고자 한다. 영역 기반 기법으로 스테레오 영상의 대응점을 찾기 위해 탐색 화소 주변 영역의 기울기를 계산하여 윈도우의 크기 및 모양을 적응적으로 결정하고, 윈도우 영역의 정합 비용 함수는 변형된 Census 변환과 AD 연산 결과의 가중합으로 구한다. 정합 과정에서 계산복잡도를 줄이기 위해 계층적 다해상도 구조를 적용하여 영상 피라미드를 만들고, 정합의 정확성을 향상시키기 위해 정합 영역에 변위 평활성과 같은 제약 조건을 적용하여 변위를 전파하는 방법을 사용한다. 실험을 통해 제안한 방법이 변위 탐색 시간을 감소시킬 뿐만 아니라 정합의 타당성이 보장됨을 확인하고자 한다.

영역 이진화 모델링과 지역적 변형 모델을 이용한 시간차 흉부 CT 영상의 폐 실질 비강체 정합 기법 (Non-rigid Registration Method of Lung Parenchyma in Temporal Chest CT Scans using Region Binarization Modeling and Locally Deformable Model)

  • 계희원;이정진
    • 한국멀티미디어학회논문지
    • /
    • 제16권6호
    • /
    • pp.700-707
    • /
    • 2013
  • 본 논문에서는 시간차 흉부 CT 영상의 폐 실질 비강체 정합을 위하여 영역 이진화 모델링과 지역적 변형 모델을 이용한 정합 기법을 제안한다. 제안 기법은 먼저 폐 혈관과 실질을 분할하고, 영역 이진화 모델링을 수행하여 두 영상 사이의 밝기값의 차이에 따른 정합 오차를 최소화 한다. 다음으로 초기 정합 기법으로 두 폐 표면을 전역적으로 정렬하고, 지역적 변형 변환 모델을 제안하여 비강체 정합을 수행한다. 또한, 정합 후 감산된 시간에 따른 밝기값 차이가 미리 정의된 칼라 맵을 이용하여 가시화 된다. 실험 결과는 제안기법이 10명의 환자에 대하여 최대호흡과 최소호흡 CT 영상에서 폐 실질을 정확하게 정합하였음을 보여주었다. 제안된 비강체 정합 기법은 폐 실질에 대한 정량적 분석 결과의 직관적인 칼라 매핑을 통하여 다양한 폐 질환의 정량적 분석에 유용하게 사용될 수 있다.

데몬 알고리즘을 이용한 호기-흡기 CT 영상 비강체 폐 정합 (Nonrigid Lung Registration between End-Exhale and End-Inhale CT Scans Using a Demon Algorithm)

  • 임예니;홍헬렌;신영길
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권1호
    • /
    • pp.9-18
    • /
    • 2010
  • 본 논문에서는 호기와 흡기에 촬영된 흉부 CT 영상간 폐 영상정합을 위해 데몬 알고리즘을 이용한 비강체 정합 방법을 제안한다. 먼저 두 영상에 어파인 변환을 적용하여 폐를 전역적으로 정렬한 후, 데몬 알고리즘에 기반한 비강체 정합 방법을 적용하여 지역적으로 변형시킨다. 데몬 힘의 계산을 위해 기준영상의 기울기 정보 뿐 아니라 부유영상의 기울기 정보를 함께 사용하여 기준영상의 기울기가 약한 부분에서 빠른 수렴을 돕는다. 활성-셀 기반 데몬 알고리즘은 두 영상 간 정합도가 높은 셀에서의 불필요한 변위 계산을 방지함으로써 정합 과정을 가속화시키고 변형 접힘 현상의 확률을 줄여주는 역할을 한다. 제안방법의 성능을 평가하기 위해 기준 기울기 힘을 사용한 방법과 부유 기울기 힘을 함께 사용한 방법을 비교하고, 활성-셀을 사용한 방법과 사용하지 않은 방법을 비교하였다. 실험 결과는 제안 방법이 변형이 큰 폐를 정확하게 정합하며 수행시간을 감소시킴을 보여준다.

Megavoltage Cone-beam CT 영상의 변환을 이용한 변환 영상 정합의 정확도 향상 (Enhancement of the Deformable Image Registration Accuracy Using Image Modification of MV CBCT)

  • 김민주;장지나;박소현;김태호;강영남;서태석
    • 한국의학물리학회지:의학물리
    • /
    • 제22권1호
    • /
    • pp.28-34
    • /
    • 2011
  • 적응 방사선 치료(Adaptive Radiation Therapy, ART)를 실행하기 위한 고도의 정확성을 갖는 변형 영상 정합 방법은 필수이다. 본 연구의 목적은 Megavoltage cone-beam CT (MV CBCT)영상의 Intensity 변화를 통한 영상 정합의 정확성의 향상이다. Intensity 변화 값을 도출 하기 위해 kilovoltage CT (kV CT)와 MV CBCT를 이용하여 12 종류의 전자 밀도 바를 제공하는 Cheese 팬텀의영상을 획득하고, 영상들로부터 kV CT와 MV CBCT의 Hounsfield Unit (HU)값들의 관계를 도출하였다. MV CBCT 영상의 잡음을 감소하기 위해 Gaussian smoothing 필터를 적용하였다. MV CBCT영상의 intensity는 마치 동일한 모달리티에서 획득된 영상과 같은 kV CT와 동일한 범위의 intensity로 변화시켰다. 이후 두 영상에 효율적이고 사용하기 쉬운 intensity 기반의 데몬 영상 정합이 적용되었다. 본 연구실에서 인체 내 폐를 모사하도록 제작된 변형 폐 팬텀을 이용하여 위와 같은 방법을 적용하여 영상 정합을 하였다. Cheese 팬텀 영상, 변형 폐 팬텀 영상을 이용한 변형영상 정합 결과는 상관 계수가 각각 6.07%, 18% 향상되었다. 변형 폐 팬텀 영상의 변형 영상 정합 정확성을 평가하기 위해 추가적으로 측정된 팬텀 내부에 삽입한 표적의 중심 좌표를 이용하여vector 차이를 계산하였다. 벡터 차이는 $2.23{\pm}1.19mm$, $1.39{\pm}0.97mm$였다. 본 연구에서 사용한 intensity 변화 방법을 통해 변형 영상 정합의 정확성이 향상됨을 확인 하였고, 본 연구는 영상 정합 정확성을 향상시키기 위한 해결 방법이 될 수 있다. 차후 연구 계획도 본 연구 내용에 의해 제안되었다.

다해상도 동영상에서 다중 객체 추적 (Multiple Object Tracking in Space-variant Image Sequences)

  • 강성훈;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.487-489
    • /
    • 2000
  • 본 논문에서는 다해상도 영상에서 움직이는 다중 객체의 추적 방법을 다룬다. 일반적으로 객체 추적 알고리즘은 움직임 탐지, 정합, 갱신의 처리 단계로 구성되어 있다. 특히 다중객체 추적일 경우, 정합 과정은 매우 중요하다. 일반적인 시각 시스템에서는 대상 객체가 강체(rigid object)라고 가정하면 이러한 정합 과정은 비교적 쉽게 구현될 수 있다. 그러나 다해상도 영상에서는 한 위치에서 다른 위치로 움직일 때 그 영역의 형태 및 크기가 변형 되기 때문에 정합이 쉽게 이루어지지 않는다. 따라서 본 논문에서는 이러한 문제를 해결할 수 있는 다해상도 영상에서의 정합방법을 제안한다.

  • PDF

상호정보 최적화를 통한 다중 모달리티 영상정합 (Multimodality Image Registration by Optimization of Mutual Information)

  • 홍헬렌;김명희
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2000년도 추계학술대회 논문집
    • /
    • pp.180-185
    • /
    • 2000
  • 방사선 치료계획이나 사전수술계획 등에 컴퓨터 사용이 늘어남에 따라 의료영상별 특성에 따른 복합적 처리를 필요로 한다. 본 논문에서는 다중 모달리티 영상으로부터 의미 있는 정보를 제공하기 위하여 상호정보 최적화를 통한 영상정합 방법을 제안한다. 본 방법은 두 영상에서 대응되는 위치의 명암도간 통계적 의존관계와 정보중복성을 계산하는 상호정보(mutual information)를 통해 영상간 변형관계를 추정함으로써 영상을 정합한다. 실험결과로는 뇌 자기공명영상(MRI)과 컴퓨터단층촬영영상(CT)의 상호정보를 최적화하여 정합 결과를 제시한다. 본 방법은 기존 정합방법에서 사용하는 영상분할이나 특징점 추출 등의 전처리 과정 없이 영상 자체 정보를 기반으로 계산함으로써 정합의 정확도를 높일 수 있다.

  • PDF

히스토그램 블록 기반 유사 영상 맵 생성 및 영상 합성 알고리즘 (Histogram Block-based Similarity Image Map and Image Stitching Algorithm)

  • 유재성;이은별;김하린;이재만;이의상;김규헌
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.40-43
    • /
    • 2016
  • 본 논문에서는 다수의 영상을 빠르고 오류 없이 정합하기 위하여 정합과정의 전 처리로써 유사도 맵 생성 알고리즘을 제안한다. 본 논문에서는 블록화한 히스토그램을 통하여 영상간의 관계를 판별하게 된다. 두 영상의 블록 히스토그램을 비교하여 영상 간의 유사성과 위치관계를 8 방향으로 판별하고 이를 이용하여 유사도 맵에 영상들을 정렬하게 된다. 유사도 맵의 생성으로 정합 알고리즘을 적용해야 하는 경우의 수가 줄어들어 복잡도는 낮아지게 되어 이후 정합과정에서 속도의 이득을 얻을 수 있다. 또한 정합 방법으로 변형이 적은 영상을 정합하는데 탁월한 성능과 속도를 보이는 히스토그램을 이용한 방법을 제안한다. 제안 알고리즘을 이용하여 실험한 결과 기존의 다중 영상 스티칭 알고리즘에 비하여 매우 빠른 속도를 확인 할 수 있고 결과 영상 또한 오류가 적은 것을 확인 할 수 있다.

  • PDF

상호정보 최적화를 통한 영상정합 (Image Registration by Optimization of Mutual Information)

  • 홍헬렌;김명희
    • 정보처리학회논문지B
    • /
    • 제8B권2호
    • /
    • pp.155-163
    • /
    • 2001
  • 본 논문에서는 다중 모달리티 영상으로부터 의미 있는 정보를 제공하기 위하여 상호정보 최적화를 통한 영상정합 방법을 제안한다. 본 방법은 두 영상이 기하학적으로 정합되면 상호정보가 최대화된다는 가정 하에 두 영상에서 대응되는 위치의 명암도간 통계적 의존관계나 정보중복성을 계산하는 상호정보를 통하여 영상간 변형관계를 추정함으로써 영상을 정합한다. 실험결과로는 뇌 컴퓨터단층촬영영상의 상호정보를 최적화한 정합결과와 가우시안형 잡음 첨가에 따른 정합 비교 결과를 제시한다. 본 방법은 기존 정합방법에서 사용하는 영상분할이나 특징점 추출에 의한 정합이 아닌 영상 자체 정보를 사용함으로써 사용자와의 상호작용이 불필요하며 정합의 정확도를 향상시킬 수 있고 잡음에도 견고하다.

  • PDF