• Title/Summary/Keyword: 변형 라플라시안

Search Result 12, Processing Time 0.016 seconds

Efficient Correlation Channel Modeling for Transform Domain Wyner-Ziv Video Coding (Transform Domain Wyner-Ziv 비디오 부호를 위한 효과적인 상관 채널 모델링)

  • Oh, Ji-Eun;Jung, Chun-Sung;Kim, Dong-Yoon;Park, Hyun-Wook;Ha, Jeong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.23-31
    • /
    • 2010
  • The increasing demands on low-power, and low-complexity video encoder have been motivating extensive research activities on distributed video coding (DVC) in which the encoder compresses frames without utilizing inter-frame statistical correlation. In DVC encoder, contrary to the conventional video encoder, an error control code compresses the video frames by representing the frames in the form of syndrome bits. In the meantime, the DVC decoder generates side information which is modeled as a noisy version of the original video frames, and a decoder of the error-control code corrects the errors in the side information with the syndrome bits. The noisy observation, i.e., the side information can be understood as the output of a virtual channel corresponding to the orignal video frames, and the conditional probability of the virtual channel model is assumed to follow a Laplacian distribution. Thus, performance improvement of DVC systems depends on performances of the error-control code and the optimal reconstruction step in the DVC decoder. In turn, the performances of two constituent blocks are directly related to a better estimation of the parameter of the correlation channel. In this paper, we propose an algorithm to estimate the parameter of the correlation channel and also a low-complexity version of the proposed algorithm. In particular, the proposed algorithm minimizes squared-error of the Laplacian probability distribution and the empirical observations. Finally, we show that the conventional algorithm can be improved by adopting a confidential window. The proposed algorithm results in PSNR gain up to 1.8 dB and 1.1 dB on Mother and Foreman video sequences, respectively.

Development of Numerical Method for Large Deformation of Soil Using Particle Method (입자법을 이용한 토사의 대변형 해석법 개발)

  • Park, Sung-Sik;Lee, Do-Hyun;Kwon, Min-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.35-44
    • /
    • 2013
  • In this study, a particle method without using grid was applied for analysing large deformation problems in soil flows instead of using ordinary finite element or finite difference methods. In the particle method, a continuum equation was discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. Soil behavior changes from solid to liquid state with increasing water content or external load. The Mohr-Coulomb failure criterion was incorporated into the particle method to analyze such three-dimensional soil behavior. The yielding and hardening behavior of soil before failure was analyzed by treating soil as a viscous liquid. First of all, a sand column test without confining pressure and strength was carried out and then a self-standing clay column test with cohesion was carried out. Large deformation from such column tests due to soil yielding or failure was used for verifying the developed particle method. The developed particle method was able to simulate the three-dimensional plastic deformation of soils due to yielding before failure and calculate the variation of normal and shear stresses both in sand and clay columns.