• Title/Summary/Keyword: 변형 경화율

Search Result 63, Processing Time 0.026 seconds

An Experimental Study on the Engineering Properties of HPFRCC According to Kinds, Shapes and Volume Fraction of Fibers (섬유의 종류, 형상 및 치환율에 따른 HPFRCC의 공학적 특성에 관한 실험적 연구)

  • 김영덕;조봉석;김재환;김규용;최경렬;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.59-62
    • /
    • 2003
  • Kinds, shapes and fraction ratios of fibers have influence on properties of HPFRCC(High-Performance Fiver Reinforced Cementitious Concrete ) like bending strength, strain capacity and fracture toughness. For example, hydrophilic fibers have different chemical bond strength from hydrophobic fibers, fiber shapes influence on fiber pull-out and rupture, and fiber volume fraction influence on bending strength. In this study, to estimate influences of kinds, shapes and fraction ratios of fibers, we make HFRCC with 3 kind of fiber in various volume fraction of fiber and compare cracking, bending strength and fracture toughness. As the results, bending strength of HPFRCC was increased as fiber volume fraction was Increase and fiber tensile strength was increase, and strain capacity and fracture toughness of HFRCC was higher in fiber pull-out fracture than in fiber rupture fracture. And HFRCC showing pseudo strain hardening has higher fiber reinforce efficiency than others.

  • PDF

General Response for Lateral-Torsional Buckling of Short I-Beams Under Repeated Loadings (반복하중을 받는 짧은 I형 보의 횡-비틀림 좌굴의 일반적 응답에 관한 고찰)

  • 이상갑
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.119-132
    • /
    • 1992
  • The objective of this study is to perform extensive parametric studies of the lateral-torsional buckling of short 1-beams under repeated loadings, and to gain a further insight into the lateral-torsional beam buckling problem. A one-dimensional geometrically (fully) nonlinear beam model is used, which includes superposed infinitesimal transverse warping deformation in addition to finite torsional warping deformation. A multiaxial cyclic plasticity model is also implemented to better represent cyclic metal plasticity in conjunction with a consistent return mapping algorithm. The general response for the lateral-torsional buckling of short I-beams under repeated loadings is examined through several parametric studies around the standard case : the material yield strength, the yield plateau, the strain hardening, the kinematic hardening, the residual stresses, the load eccentricity with respect to the shear center, the height of the load with respect to the cross-section of the beam, the location of the load along the length of the beam, the dimensions of the cross-section of the beam and the fixity of the supported end remote from the load.

  • PDF

Flexural and Tensile Performance of Strain-Hardening Cement Composite with Synthetic Fibers (합성섬유를 사용한 변형경화형 시멘트 복합체의 휨 및 인장성능)

  • Kim, Sun-Woo;Lee, Min-Jung;Jang, Yong-Heon;Jang, Gwang-Soo;Song, Seon-Hwa;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.925-928
    • /
    • 2008
  • Fiber is an important ingredient in strain-hardening cementitious composite (SHCC), which can control fracture of cementitious composite by bridging action. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of SHCC. To apply SHCC to structural member, SHCC must have economical efficiency and workability as well as own excellent tensile performance. For these purposes, four-point bending and direct tensile tests on SHCC with only hybrid synthetic fibers, total fiber volume fraction, $V_f$, is 1.5%, are carried out. The research emphasis is on the mechanical properties of SHCC made in Polyvinyl alcohol (PVA) and Polyethylene (PE) fibers, and how this affects the composite property, and ultimately its strain-hardening performance. Also, effect of hybrid type and water-cement ratio on the behavior of SHCC was evaluated in this paper.

  • PDF

A nonlinear Co-rotational Quasi-Conforming 4-node Shell Element Using Ivanov-Ilyushin Yield Criteria (이바노브-율리신 항복조건을 이용한 4절점 비선형 준적합 쉘요소)

  • Panot, Songsak Pramin;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.409-419
    • /
    • 2008
  • A co-rotational quasi-conforming formulation of four- node stress resultant shell elements using Ivanov-Ilyushin yield criteria are presented for the nonlinear analysis of plate and shell structure. The formulation of the geometrical stiffness is defined by the full definition of the Green strain tensor and it is efficient for analyzing stability problems of moderately thick plates and shells as it incorporates the bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. This formulation also integrates the elasto-plastic material behaviour using Ivanov Ilyushin yield condition with isotropic strain hardening and its asocia ted flow rules. The Ivanov Ilyushin plasticity, which avoids multi-layer integration, is computationally efficient in large-scale modeling of elasto-plastic shell structures. The numerical examples herein illustrate a satisfactory concordance with test ed and published references.

A Study on the Low Cycle Fatigue Characteristics for the Structural Low Carbon Steels (構造용 低炭素鋼材의 低사이클 疲勞特性에 관한 硏究)

  • 김영식;노재충;한명수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.307-315
    • /
    • 1989
  • In recent years, the fatigue design method by analysis for the mechanical components and the welded structures has much increased, instead of the fatigue design method by rule that has been widely used from the past days. When a fatigue design is conducted by that method, the basic informations, fatigue life curves are mainly obtained from the results of the strain controlled low cycle fatigue test. From these point of views, the low cycle fatigue test is coming to be given a much importance lately. In this paper, the strain controlled low cycle fatigue properties at room temperature in air environment were investigated for the low carbon forged steel, SF45A, and the rolled steel for the welded structure, SM 41B. Throughout the test, strain ratio, R, was maintained constant with the fully reversed condition, -1. As the experimental results, the cyclic stress-strain behaviours of the test materials were different each other, but the low cycle fatigue life-time of them appeared to show little difference in the region of this test conditions.

Effects of Fiber Volume Fraction and Cross-Section Shape Modifications on the Seismic Performance of Precast Infill Walls with SHCC (섬유의 혼입율 및 단면 형상 변화에 따른 SHCC 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Lee, Young-Oh;Cha, Jun-Ho;Yang, Hae-Jun;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.125-126
    • /
    • 2010
  • In this study is analysis of infill walls fiber volume fraction and reduced the inside cross-section of strain-hardening cement composite(SHCC) infill walls is to evaluate seismic performance experimentally.

  • PDF

Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test (평면변형시험을 이용한 화강풍화토의 응력-변형률 특성)

  • Kim, You-Seong;Lee, Jin-Kwang;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.37-46
    • /
    • 2014
  • Geotechnical structures have been analyzed and constructed in various geometry conditions to maintain their stability in accordance with the characteristics of construction design. Shear strengths are generally obtained from triaxial test to apply to design analysis. Geotechnical structures under strip loading, such as earth dam, embankment, and retaining wall, have the strain in a direction, and plane strain condition. Thus, an approximate shear strengths should be applied for stability analysis suitable to ground condition. When applying shear strengths obtained from triaxial tests for slope stability analysis, the evaluation of it may underestimate the factor of safety because the implementation is not suitable for geometry condition. The paper compares shear strengths obtained from triaxial test and plane strain test based on various relative densities using weathered granite soils. Additionally, yield stress is determined by maximum axial strain 15% in triaxial test because of continuous kinematic hardening, but plane strain test can determine a failure point in critical state to evaluate the shear strengths of soils at the second plastic hardening step. This study proposes to perform an appropriate test for many geotechnical problems with plane strain condition.

Study on Viscoelastic Properties of Rice Plant (벼줄기의 점탄성(粘彈性) 특성(特性)에 관(關)한 연구(硏究))

  • Huh, Yun Kun
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.255-264
    • /
    • 1986
  • The objectives of this study were to examine the viscoelastic behaviour of stem samples of rice in force-relaxation and rheological model to represent its relaxation behaviour, and to study the effects of rate of deformation and initial deformation on the relaxation time. The results were as follows; 1. In the process of loading and unloading, there is any plastic deformation so called elasto-plastic hysterisis. 2. Loading and unloading of stem of rice for several cycles has also shown the reduction of plastic or residual deformation and work hardening. 3. The relaxation behaviour of stem of rice in compression may be described by a generalized Maxwell model consisting of three Maxwell units in parallel. The rheological equation of such a model is given as $$F(t)=C_1e^{{-t/{\tau}}_1}+C_2e^{{-t/{\tau}}_2}+C_3e^{{-t/{\tau}}_3}$$ 4. Force relaxation always increased with increasing rates of deformation and initial deformation.

  • PDF

Analysis of axisymmetric extrusion through curved dies by using the method of weighted residuals (가중잔류항법을 이용한 곡면금형의 축대칭 전방압출해석)

  • 조종래;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.509-518
    • /
    • 1987
  • The paper is concerned with the analysis of axisymmetric forward extrusion by using the method of weighted residuals. In the method of weighted residuals, the flow function and the stress functions are assumed so as to cover the global control volume. The derived stress and strain components are used to formulate a constitutive equation in the error form, so that the error is minimized to determine the stress and strain components. The method of least squares is then chosen for the minimization of errors. The distribution of stresses and strains and the forming load are determined for the workhardening material considering the frictional effect at the die surface. The computed results are very similar to those obtained by the finite element method. The method is simpler in application and requires less computational time than the finite element method. Experiments are carried out for aluminum and steel specimens using curved dies. It is found that the experimental observation is mostly in agreement with the computed results by the method of weighted residuals.

Effects of Fiber Blending Condition and Expansive Admixture Replacement on Tensile Performance of Rebar Lap Splice in Strain-Hardening Cement-Based Composites (SHCCs) (섬유혼입조건 및 팽창재 대체에 따른 변형 경화형 시멘트 복합체 내의 철근 겹침이음 성능)

  • Ryu, Seung-Hyun;Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • This paper is a report about lap splice performance of rebar embedded in the strain-hardening cement-based composites (SHCCs) under monotonic and repeated tension loading. Ten mix proportions of cement-based composites such as SHCCs and normal concrete were investigated. The study parameters are comprised of (1) types of reinforcing fibers (polyethylene and steel fiber), (2) replacement levels of expansive admixture (EXA, 0% and 10%), and (3) compressive strength (30 and 100 MPa) of cement-based composites. Lap splice lengths (ld) of rebars in SHCC materials and normal concrete were 60% and 100% of splice length calculated by code requirements for structural concrete, respectively. Test results indicated that SHCCs materials can lead to enhancements in the lap splice performance of embedded rebar. All of the fiber reinforcement conditions (PE-SHCC and PESF-SHCC) considered in this study produced considerable improvements in the tensile strength, cracking behavior, and bond strength of lap-spliced rebar. Furthermore, adding EXA to SHCC matrix improved the tensile lap splice performance of rebar in SHCC materials. However, for controlling crack behavior, the performance of PE-SHCC was better than that of PESF-SHCC due to its mechanical properties. This study demonstrated an effective approach for reducing required development length of lap spliced rebar by using SHCC materials.