• Title/Summary/Keyword: 변형률 보정

Search Result 72, Processing Time 0.02 seconds

Dynamic Analysis of Plates using a Improved Assumed Natural Strain Shell Element (개선된 자연변형률 쉘 요소를 이용한 판의 진동해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2284-2291
    • /
    • 2010
  • In this paper, we investigate the vibration analysis of plates, using an 8-node shell element that accounts for the transverse shear strains and rotary inertia. The forced vibration analysis of plates subjected to arbitrary loading is investigated. In order to overcome membrane and shear locking phenomena, the assumed natural strain method is used. To improve an 8-node shell element for forced vibration analysis, the new combination of sampling points for assumed natural strain method was applied. The refined first-order shear deformation theory based on Reissner-Mindlin theory which allows the shear deformation without shear correction factor and rotary inertia effect to be considered is adopted for development of 8-node assumed strain shell element. In order to validate the finite element numerical solutions, the reference solutions of plates are presented. Results of the present theory show good agreement with the reference solution. In addition the effect of damping is investigated on the forced vibration analysis of plates.

Evaluation of Shrinkage and Creep Behavior of Low-Heat Cement Concrete (저열 시멘트 콘크리트의 건조수축 및 크리프 거동 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Kim, Si-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • This study examined the long-term inelastic characteristics, including unrestrained shrinkage and creep, of low-heat cement concrete under different ambient curing temperatures. To achieve the designed compressive strength of 42MPa, water-to-binder ratios were selected to be 27.5, 30, and 32.5% for curing temperatures of 5, 20, and $40^{\circ}C$, respectively. Test results showed that the shrinkage strains of concrete mixtures tended to decrease with the decrease in curing temperature because of the delayed evaporation of internal capillary and gel waters. Meanwhile, creep strains were higher in concrete specimens under lower curing temperature due to the occurrence of the transition temperature creep. The design models of KCI provision gave better accuracy in comparison with test results than those of ACI 209, although a correction factor for low-heat cement needs to be established in the KCI provision.

Cure Monitoring of Epoxy Resin by Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 에폭시 수지의 경화도 모니터링)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.

Study on the compensation of shape error using Shrinkage rate of resin in Rapid Prototyping (쾌속조형시 레진의 수축률을 고려한 형상오차보정에 관한 연구)

  • 이지용;김태호;박재덕;박정보;전언찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.351-355
    • /
    • 2003
  • Recently, the Rapid Prototyping System makes used of changing file format. The most problem is produced by this process. It is influenced by the precision of shape manufacturing. And It is most influenced by shrinkage rate within many elements influence the precision of 3D shape manufacturing. In result, the length strain in each axis cause at STL file transforming. It will compensate for utilizing the shrinkage rate.

  • PDF

Distorted Scanned-Comics Calibration System (변형 스캔-만화 보정 시스템)

  • Lee, Sang-Hoon;Kim, Doeyoung;Vasant, Jadhav Sagar;Ryu, Justin Daegull;Kang, Hogab;Lee, Sanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.264-265
    • /
    • 2014
  • 불법적으로 생성된 디지털 콘텐츠의 저작권의 보호를 위하여 콘텐츠 식별 작업이 필요하다. 스캔된 불법 만화 도서의 경우 콘텐츠 식별을 위하여 이를 위해 특별히 제작된 핑거프린트가 필요하다. 핑거프린트를 통한 저작물의 식별률을 높이기 위해서 는 스캔 만화 이미지의 전처리 과정이 필요하다. 본 논문에서는 종이 만화도서가 스캐너를 통해 이미지로 전환되는 과정에서 스캐너에 의해 일어나는 광도 왜곡을 최소화하여 만화 도서의 식별률을 높이고자 하였다. 실험을 통해 약 27%의 식별율의 개선을 얻었다.

  • PDF

Measurement and Analysis of the Material Behavior of Corrugated Paperboard for Finite Element Analysis (유한요소해석을 위한 골판지 소재의 물성측정 및 분석)

  • Gyu-Yeol Kang;Duk-Geun Bae;Sun-Jong, Noh;Sim-Won Chin;Woo-Jong Kang
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.143-149
    • /
    • 2024
  • This paper measures the mechanical properties of corrugated cardboard, an eco-friendly packaging material, and applies these measurements to the MAT_PAPER model in LS-DYNA for finite element analysis. Although MAT_PAPER is primarily designed for modeling the behavior of paper, this research demonstrates its applicability to corrugated cardboard as well. Tensile, compression, and shear behaviors of a corrugated cardboard were measured and analyzed, and based on these results, six yield surfaces were derived and integrated into the MAT_PAPER model. By comparing the finite element analysis of the material tests and the low velocity collapse analysis of the corrugated cardboard square boxes with each experimental results, it was shown that the behavior of corrugated cardboard could be equivalently considered well by the MAT_PAPER model. However, since the model is not rate-dependent, the high strain rate properties of liner materials were measured and used for strain rate correction. Consequently, this matches well with the results of the high-speed compression tests of the corrugated cardboard square boxes.

Development of Rutting Model for Asphalt Mixtures using Laboratory and Accelerated Pavement Testing (실내 및 포장가속시험를 이용한 아스팔트 혼합물의 소성변형 모형 개발)

  • Lee, Sang-Yum;Lee, Hyun-Jong;Huh, Jae-Won;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.79-89
    • /
    • 2008
  • The pavement performance model is the most important factor to determine the pavement life in the mechanistic-empirical pavement design guide (MEPDG). As part of Korean Pavement Research Program (KPRP), the Korean Pavement Design Guide (KPDG) is currently being developed based on mechanistic-empirical principle. In this paper, the rutting prediction model of asphalt mixtures, one of the pavement performance model, has been developed using triaxial repeated loading testing data. This test was conducted on various types of asphalt mixtures for investigating the rutting characteristics by varying with the temperature and air void. The calibration process was made for the coefficients of rutting prediction model using the accelerated pavement testing data. The accuracy of prediction model can be increased when by considering the effect of individual rutting properties of materials rather than shear stresses with depths.

  • PDF

Review of Steel ratio Specifications in Korean Highway Bridge Design Code (Limit States Design) for the Design of RC Flexural Members (철근콘크리트 휨부재 설계를 위한 도로교설계기준(한계상태설계법)의 철근비 규정 검토)

  • Lee, Ki-Yeol;Kim, Woo;Lee, Jun-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.277-287
    • /
    • 2017
  • This paper describes the specifications on balanced steel ratio and maximum reinforcement for the design of RC flexural members by the Korean Highway Bridge Design Code based on limit states design. The Korean Highway Bridge Design Code (Limit States Design) is not provide for the balanced steel ratio specification for the calculation of required steel area of RC flexural members design. The maximum steel area limited the depth of the neutral axis at the ultimate limit states after redistribution of the moment, and also recommended the maximum steel area should not exceed 4 percent of the cross sectional area. However, from the maximum neutral axis depth provisions should increase the cross section is calculated to be less the maximum reinforcement area, and according to the 4% of the cross sectional area of the concrete, the tensile strain of the reinforcement is calculated to be greater than double the yielding strain, so can not guarantee a ductile behavior. This study developed a balanced reinforcement ratio that is basis for the required reinforcement calculation for tension-controlled RC flexural members design in the ultimate limit states verification provisons and material properties and applied the ultimate strain of the concrete compressive strength with a simple formular to be applied to design practice induced. And assumed the minimum allowable tensile strain of reinforcement double the yielding strain, and applying correction coefficient up to the ratio of maximum neutral axis depth, proposed maximum steel ratio that can be applied irrespective of the reinforcement yield strength and concrete compressive strength.

Evaluation of Correlation between Subgrade Reaction Modulus and Strain Modulus Using Plate Loading Test (평판재하시험을 이용한 지반반력계수와 변형률계수의 상관관계 평가)

  • Kim, Dae-Sang;Park, Seong-Yong;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.57-67
    • /
    • 2008
  • Two test methods, nonrepetitive plate loading test (NPLT) and repetitive plate loading test (RPLT) are being used to control the quality of compaction through the evaluation of the stiffness of subgrade soils in the Korea railway industry. Subgrade reaction modulus ($k_{30}$) from the NPLT and strain modulus ($E_v$) from the RPLT are the index values to check them. The methods have similar aspects, but they differ in the modulus evaluation method, the numbers of loading stage, termination procedures, etc. This paper analyses the differences of the two test methods and evaluates the relationship between subgrade reaction modulus and strain modulus. In order to develop the relationship, total 22 tests were performed including the NPLT and the RPLT at the 6 original grounds, and 5 upper or lower subgrades in Kyungbu High Speed Railway II stage construction sites. According to the soil conditions, the relationship between subgrade reaction modulus and strain modulus was proposed with corrections by considering strain states, mean confining pressures, and Poisson's ratio.

Study on the Error Compensation in Strain Measurement of Sheet Metal Forming (박판성형 변형률 측정 오차보정에 관한 연구)

  • 한병엽;차지혜;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.270-273
    • /
    • 2003
  • The strain measurement of the panel in the sheet metal forming is essential work which provides experimental data needed to die design, process design, and product inspection. To measure efficiently the complex geometry strain, the 3-dimensional automative strain measurement system, which has high accuracy in theory, but has some 3∼5% errors in practice, is often used. The object of this study is to develop the error compensation technology to eliminate the strain, errors resulted when formed panels are measured using an automated strain measurement system. To achieve the study object, the position error calibration method correcting coordinates of the grid node recognized by a camera using error functions is suggested. Then the position errors were found by calculating the difference in the position of the cube node between real coordinates and measured coordinates in toms of node coordinates and the error calibration equations were derived by regressing the position errors. In order to show the validation of the suggested position error calibration method, finite element analysis and current calibration method was performed for the initial-blankformed.

  • PDF