• 제목/요약/키워드: 변형률에너지밀도

검색결과 36건 처리시간 0.024초

향상된 구형압입 고무 물성평가법 (Enhanced Spherical Indentation Techniques for Rubber Property Evaluation)

  • 황규민;오중수;이형일
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1357-1365
    • /
    • 2009
  • In this study, we enhance the numerical approach of Lee et al.$^{(1)}$ to spherical indentation technique for property evaluation of hyper-elastic rubber. We first determine the friction coefficient between rubber and indenter in a practical viewpoint. We perform finite element numerical simulations for deeper indentation depth. An optimal data acquisition spot is selected, which features sufficiently large strain energy density and negligible frictional effect. We then improve two normalized functions mapping an indentation load vs. deflection curve into a strain energy density vs. first invariant curve, the latter of which in turn gives the Yeoh-model constants. The enhanced spherical indentation approach produces the rubber material properties with an average error of less than 3%.

Mean Stress를 고려한 11.7Cr-1.1Mo강의 고온저주기 피로특성에 관한 연구 (A Study of Low Cycle Fatigue Characteristics of 11.7Cr-1.1Mo Heat Resisting Steel with Mean Stress)

  • 홍상혁;홍춘희;이현우
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.133-141
    • /
    • 2006
  • The Low cycle fatigue behavior of 11.7Cr-1.1Mo heat-resisting steel has been investigated under strain-controlled conditions with mean stresses at room temperature and $300^{\circ}C$. For the tensile mean stress test, the initial high tensile mean stress generally relaxed to zero at room temperature, however, at $300^{\circ}C$ initial tensile mean stress relaxed to compressive mean stress. Low cycle fatigue lives under mean stress conditions are usually correlated using modifications to the strain-life approach. Based on the fatigue test results from different stain ratio of -1, 0, 0.5, and 0.75 at room temperature and $300^{\circ}C$, the fatigue damage of the steel was represented by using cyclic strain energy density. Total strain energy density considering mean stress indicated well better than not considering mean stress at $300^{\circ}C$. Predicted fatigue life using Smith-Watson-Topper's parameter correlated fairly well with the experimental life at $300^{\circ}C$.

Inconel 617의 저주기피로 수명 예측 (Prediction of low cycle fatigue life for Inconel 617)

  • 김기광;김덕회;김재훈;이영신;박원식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.612-615
    • /
    • 2005
  • Low cycle fatigue tests are performed on the Incollel 617 that be used fur a hot gas casing. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of Inconel 617. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Mansun method. Also the cyclic behavior of Inconel 617 is characterized by cyclic hardening with increasing number of cycle at room temperature.

  • PDF

정적 광탄성 실험 하이브리드법에 의한 직교이방성체의 균열전파 기준에 관한 연구 (A Study on the Crack Propagation Criterion of Orthotropic Material by the Static Photoelastic Experimental Hybrid Method)

  • 신동철;황재석;남성수;권오성
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1799-1806
    • /
    • 2004
  • The static photoelastic experiment was applied to orthotropic materials. And then the specimens used in photoelastic experiment were fractured under static load. The static photoelastic experimental hybrid method for orthotropic material was introduced and its validity had been assured. Crack propagation criterion used the stress components, which are considered the higher order terms, obtained from the static photoelastic experimental hybrid method was introduced and it was applied to the minimum strain energy density criterion, the maximum tangential stress criterion and mode mixity. Comparing the actual initial angle of crack propagation with the theoretical initial angle of crack propagation obtained from the above failure criterions, the validities of the above two criterions are assured and the optimal distance (${\gamma}$) from the crack-tip is 0.01mm in order to get the initial angle of crack propagation of orthotropic material(C.F.E.C.).

타이어 사이드월 고무의 피로특성 및 수명예측에 관한 연구 (A Study on the Fatigue Characteristics and Life Prediction of the Tire Sidewall Rubber)

  • 문병우;김용석;전남규;구재민;석창성;홍의석;오민경;김성래
    • 대한기계학회논문집A
    • /
    • 제41권7호
    • /
    • pp.629-634
    • /
    • 2017
  • 최근 수요가 급격히 증가하고 있는 고성능 UHP (Ultra High Performance)타이어의 경우 낮은 편평비로 인해 일반 타이어 보다 사이드월 고무에 가혹한 변형이 발생하게 된다. 사이드월 고무의 변형이 지속적으로 발생할 경우 피로손상이 축적되어 피로파괴 현상이 나타날 수 있다. 따라서 차량 주행 중 발생하는 안전사고 예방을 위한 사이드월 고무의 내구성능 평가가 중요한 문제로 대두되고 있다. 그러나 타이어 사이드월 고무의 내구성능에 대한 설계 기준 및 연구는 국내외적으로 잘 알려져 있지 않다. 본 연구에서는 타이어 사이드월 고무 2종에 대하여 인장시험과 피로시험을 수행하여 변형률에너지밀도를 이용한 수명예측식을 제시하였다. 또한, 저연비 타이어의 주행가능 예상거리를 도출하여 내구성능 만족여부를 검토하였다.

전변형률 에너지밀도를 이용한 고강도 저 합금강의 저주기 피로수명 예측 (Low Cycle Fatigue Life Prediction of HSLA Steel Using Total Strain Energy Density)

  • 김재훈;김덕희
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.166-175
    • /
    • 2002
  • Low cycle fatigue tests are performed on the HSLA steel that be developed for a submarine material. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of HSLA steel. The cyclic properties are determined by a least square fit techniques. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of HSLA steel is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of HSLA steel are investigated according to changing tempering temperatures. In the case of HSLA steel, the $\varepsilon$-Cu is farmed in $550^{\circ}C$ of tempering temperature and enhances the low cycle fatigue properties.

대변형 비선형 탄성재료의 균열길이 예측 (Crack Length Estimation for Large Deformable Non-Linear Elastic Materials)

  • 양경진;강기주;박상서
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.103-109
    • /
    • 2000
  • A method to measure the crack length in rubbery materials is described. Through dimensional analysis and experiments, an equation is derived to give the crack length as a function of the change of strain energy density in a region remote from the crack. The function is provided in a form of separated terms of loading and material, the validity of which is experimentally proved using separation parameters.

타이어에서 채취한 고무배합물의 기계적 물성 측정 (Measurement of Mechanical Material Properties of Rubber Compounds Sampled from a Pneumatic Tire)

  • 김용우;김종국
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.404-409
    • /
    • 2002
  • Pneumatic tires usually contain a variety of rubber compositions, each designed to contribute some particular factor to overall performance. Rubber compounds designed for a specific function will usually be similar but not identical In composition and properties. Since 1970`s finite element analysis of tire has been performed extensively, which requires some energy density functions of rubber components of a tire. The conventional Mooney-Rivlin material model is one of the description that is commonly used in the analysis of tire. In this paper, we report the two material constants of gooney-Rivlin material model for some rubber compounds of a real pneumatic tire, which are obtained through uniaxial tension test.

  • PDF

FEM을 이용한 Belt Width와 Separation에 관한 연구 (A Study on the Belt width and Separation of Tire using FEM)

  • 김성래;성기득;김선주;조춘택
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.2006-2010
    • /
    • 2005
  • This study is concerned with the relation between steelbelt and belt edge separation. Belt edge separation causes tire burst and threatens passenger's safety. For that reason, it is important to predict durability caused by belt edge separation first in tire structure design step. In this study, to predict belt edge separation, we suggest the prediction method of belt edge separation and evaluate the effect of steelbelt width on the belt edge separation using FEM. We study on analysis parameter also to do exact estimation about the shear behaviour of belt edge area.

  • PDF

세 가지 상을 갖는 코드섬유-고무 복합재료의 계면의 영향 (Effect of Interface in Three-phase Cord-Rubber Composites)

  • 김종국;염영진
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1249-1255
    • /
    • 2009
  • Cord-rubber composites widely used in tires show very complicated mechanical behavior such as nonlinearity and large deformation. Three-phase(cord, rubber and the interface) modeling has been used to analyze the stress distribution in the cord-rubber composites more accurately. In this study, finite element methods were performed using two-dimensional generalized plane strain element and plane strain element to investigate the stress distribution and effective modulus of cord-rubber composites. Neo Hookean model was used for rubber property and several interface properties were assumed for various loading directions. It was found that the interface properties affect the effective modulus and the distributions of shear stress.