• Title/Summary/Keyword: 변이성 모델링

Search Result 35, Processing Time 0.016 seconds

Curvature stroke modeling for the recognition of on-line cursive korean characters (온라인 흘림체 한글 인식을 위한 곡률획 모델링 기법)

  • 전병환;김무영;김창수;박강령;김재희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.140-149
    • /
    • 1996
  • Cursive characters are written on an economical principle to reduce the motion of a pen in the limit of distinction between characters. That is, the pen is not lifted up to move for writing a next stroke, the pen is not moved at all, or connected two strokes chance their shapes to a similar and simple shape which is easy to be written. For these reasons, strokes and korean alphabets are not only easy to be changed, but also difficult to be splitted. In this paper, we propose a curvature stroke modeling method for splitting and matching by using a structural primitive. A curvature stroke is defined as a substroke which does not change its curvanture. Input strokes handwritten in a cursive style are splitted into a sequence of curvature strokes by segmenting the points which change the direction of rotation, which occur a sudden change of direction, and which occur an excessive rotation Each reference of korean alphabets is handwritten in a printed style and is saved as a sequence of curvature strikes which is generated by splitting process. And merging process is used to generate various sequences of curvature strikes for matching. Here, it is also considered that imaginary strokes can be written or omitted. By using a curvature stroke as a unit of recognition, redundant splitting points in input characters are effectively reduced and exact matching is possible by generating a reference curvature stroke, which consists of the parts of adjacent two korean alphasbets, even when the connecting points between korean alphabets are not splitted. The results showed 83.6% as recognition rate of the first candidate and 0.99sec./character (CPU clock:66MHz) as processing time.

  • PDF

Implementation of Evolving Neural Network Controller for Inverted Pendulum System (도립진자 시스템을 위한 진화형 신경회로망 제어기의 실현)

  • 심영진;김태우;최우진;이준탁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.68-76
    • /
    • 2000
  • The stabilization control of Inverted Pendulum(IP) system is difficult because of its nonlinearity and structural unstability. Futhermore, a series of conventional techniques such as the pole placement and the optimal control based on the local linearizations have narrow stabilizable regions. At the same time, the fine tunings of their gain parameters are also troublesome. Thus, in this paper, an Evolving Neural Network Controller(ENNC) which its structure and its connection weights are optimized simultaneously by Real Variable Elitist Genetic Algorithm(RVEGA) was presented for stabilization of an IP system with nonlinearity. This proposed ENNC was described by a simple genetic chromosome. And the deletion of neuron, the according to the various flag types. Therefore, the connection weights, its structure and the neuron types in the given ENNC can be optimized by the proposed evolution strategy. And the proposed ENNC was implemented successfully on the ADA-2310 data acquisition board and the 80586 microprocessor in order to stabilize the IP system. Through the simulation and experimental results, we showed that the finally acquired optimal ENNC was very useful in the stabilization control of IP system.

  • PDF

Limitations of Applying Land-Change Models for REDD Reference Level Setting: A Case Study of Xishuangbanna, Yunnan, China (REDD 기준선 설정 시 토지이용변화 예측모형 적용의 한계: 중국 운남성 시솽반나 열대림 사례를 중심으로)

  • Kim, Oh Seok
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.3
    • /
    • pp.277-287
    • /
    • 2015
  • This paper addresses limitations of land-change modeling application in the context of REDD (Reducing Emissions from Deforestation and forest Degradation). REDD is an international conservation policy that aims to protect forests via carbon credit generation and trading. In REDD, carbon credits are generated only if there is measurable quantied carbon sequestration activities that are additional to business-as-usual (BAU). A "reference level" is defined as simulated baseline carbon emissions for the future under a BAU scenario, and predictive land-change modeling plays an important role in constructing reference levels. It is tested in this research how predictive accuracies of two land-change models, namely Geographic Emission Benchmark (GEB) and GEOMOD, vary with respect to different spatial scales: Xishuangbanna prefecture and Yunnan province. The accuracies are measured by Figure of Merit. In this Chinese case study, it turns out that GEB's better performance is mainly due to quantity (e.g., how many hectares of forest will be converted to agricultural land?) rather than spatial allocation (e.g., where will the conversion happen?). As both quantity and allocation are crucial in REDD reference level setting it appears to be fundamental to systematically analyze accuracies of quantity and allocation independently in pursuit of accurate reference levels.

  • PDF

Overview of Research Trends in Estimation of Forest Carbon Stocks Based on Remote Sensing and GIS (원격탐사와 GIS 기반의 산림탄소저장량 추정에 관한 주요국 연구동향 개관)

  • Kim, Kyoung-Min;Lee, Jung-Bin;Kim, Eun-Sook;Park, Hyun-Ju;Roh, Young-Hee;Lee, Seung-Ho;Park, Key-Ho;Shin, Hyu-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.236-256
    • /
    • 2011
  • Forest carbon stocks change due to land use change is an important data required by UNFCCC(United Nations framework convention on climate change). Spatially explicit estimation of forest carbon stocks based on IPCC GPG(intergovernmental panel on climate change good practice guidance) tier 3 gives high reliability. But a current estimation which was aggregated from NFI data doesn't have detail forest carbon stocks by polygon or cell. In order to improve an estimation remote sensing and GIS have been used especially in Europe and North America. We divided research trends in main countries into 4 categories such as remote sensing, GIS, geostatistics and environmental modeling considering spatial heterogeneity. The easiest way to apply is combination NFI data with forest type map based on GIS. Considering especially complicated forest structure of Korea, geostatistics is useful to estimate local variation of forest carbon. In addition, fine scale image is good for verification of forest carbon stocks and determination of CDM site. Related domestic researches are still on initial status and forest carbon stocks are mainly estimated using k-nearest neighbor(k-NN). In order to select suitable method for forest in Korea, an applicability of diverse spatial data and algorithm must be considered. Also the comparison between methods is required.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.