• Title/Summary/Keyword: 변위형상도

Search Result 649, Processing Time 0.025 seconds

Analytical Investigation on the Deflection Characteristics of Steel Piles in Bridge Abutment for Aspect Ratio and Ground Properties (형상비 및 지반특성에 따른 교대 강관파일의 변위특성에 대한 해석적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho;Han, Jung-Geun;Lee, Yang-Koo;Kim, Jong-Ryeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.4
    • /
    • pp.73-78
    • /
    • 2007
  • The surrounding ground was much transformed by the lateral movement on the soft ground, and consequently the stake basis was damaged. In this case the installed stake is ratted the passive stake, and is actively being researched. When the unevenly distributed load was applied on the stake, and thus the lateral ground pressure was operated, and then the lateral movement was occurred, and consequently the structure is influenced. However, prediction and mechanism for the relationship of piles and abutment deformation is not sufficient. In this paper, coupled three-dimensional finite element analysis, which can be described solid, plate and frame elements at the same time, is developed by the authors. The lateral movement of bridge abutment for the aspect ratio of steel piles on soft clay is clarified by using developed numerical analysis.

  • PDF

Displacement Ductility Evaluation of Earthquake Experienced RC Bridge Piers with 2.5 Aspect Ratio (지진을 경험한 형상비 2.5 RC 교각의 내진 변위 연성도 평가)

  • 정영수;박창규;이은희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.79-88
    • /
    • 2003
  • For the construction of PC bridge piers the implementation of 1992 seismic provisions, longitudinal steels were practically lap-spliced in the plastic hinge region. Experimental investigation was conducted ductility of evaluate the seismic earthquake-experienced reinforced concrete columns with 2,5 aspect ratio. Six test specimens were mode with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=0.1f$\_$ck/A$\_$g/. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that PC bridge piers with lap-spliced longitudinal steels appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility.

Fracture Behavior of Adhesive-Bonded Aluminum Foam with Double Cantilever Beam (접착제로 접합된 이중외팔보 알루미늄폼의 파괴 거동에 관한 연구)

  • Bang, Hye-Jin;Lee, Sang-Kyo;Cho, Chongdu;Cho, Jae-Ung;Choi, Hae-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.521-526
    • /
    • 2014
  • In this study, closed-cell aluminum foam with an initial crack was investigated to produce an axial load-time graph. Using the 10-kN Landmarks of MTS Corporation, a 15-mm/min velocity of mode I shape was applied to the aluminum foam specimen using the displacement control method. ABAQUS 6.10 simulation was used to model and analyze the identical model in three dimensions under conditions identical to those of the experiment. The energy release rate was calculated on the basis of an axial load-displacement graph obtained from the experiment and a transient image of the crack length, and then an FE model was analyzed on the basis of this fracture energy condition. The relation between load and displacement was discussed; it was found that the aluminum foam deformed somewhat less than the adhesive layer owing to the difference in elastic modulus.

Seismic Performance of Square RC Column Confined with Spirals (나선철근으로 횡구속된 정사각형 RC 기둥의 내진성능)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.88-97
    • /
    • 2012
  • The objective of this research is to investigate the seismic performance and flexure-shear behavior of square reinforced concrete bridge piers with solid and hollow cross section. Test specimens were nonseismically designed with the aspect ratio 4.5 Two reinforced concrete columns were tested under constant axial load while subjected to lateral load reversals with increasing drift levels. Longitudinal steel ratio was 2.217 percent. The transverse reinforcement ratio As/($s{\cdot}h$), corresponding to 58 percent of the minimum lateral reinforcement required by Korean Bridge Design Specifications for seismic detailing, which represent existing columns not designed by the current seismic design specifications or designed by limited ductility concept. This study are to provide quantitative reference data for the limited ductility design concept and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, collapse, etc. Failure behavior, ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio, residual deformation, effective stiffness, plastic hinge length, strain of reinforcements and nonlinear analysis are investigated and discussed in this paper.

Displacement Ductility of Circular RC Column According to the Spacing of Spirals (나선철근 간격에 따른 원형 RC 기둥의 변위연성도)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.71-82
    • /
    • 2013
  • Eight small scale circular reinforced concrete columns (4.5 aspect ratio) were tested under cyclic lateral load with constant axial load. The selected test variables are longitudinal steel ratio (2.017%, 3.161%), transverse steel ratio, and axial load ratio (0, 0.07, 0.15). Volumetric ratio of spirals of all the columns is 0.335~0.894% in the plastic hinge region. It corresponds to 39.7~122.3% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The final objectives of this study are to provide quantitative reference data and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, steel fracture, etc. In this paper, describes mainly failure behavior, strength degradation behaviour, displacement ductility of circular reinforced concrete bridge columns with respect to test variables.

Verification of the Torsional Amplification Factor for the Seismic Design of Torsionally Imbalanced Buildings (비틀림 비정형 건물의 내진설계를 위한 우발편심 비틀림 증폭계수 검증)

  • Lee, Kwang-Ho;Jeong, Seoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Because of the difference between the actual and computed eccentricity of buildings, symmetrical buildings will be affected by torsion. In provisions, accidental eccentricity is intended to cover the effect of several factors, such as unfavorable distributions of dead- and live-load masses and the rotational component of ground motion about a vertical axis. The torsional amplification factor is introduced to reduce the vulnerability of torsionally imbalanced buildings. The effect of the torsional amplification factor is observed for a symmetric rectangular building with various aspect ratios, where the seismic-force-resisting elements are positioned at a variable distance from the geometrical center in each direction. For verifying the torsional amplification factor in provisions, nonlinear reinforced concrete models with various eccentricities and aspect ratios are used in rock. The difference between the maximum displacements of the flexible edge obtained between using nonlinear static and time-history analysis is very small but the difference between the maximum torsional angles is large.

Multilevel Editing for Hierarchical B-spline Curves using Rotation Minimizing Frames (RMF을 이용한 계층적 B-spline 곡선의 다단계 편집기법)

  • Zhang, Ci;Yoon, Seung-Hyun;Lee, Ji-Eun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.4
    • /
    • pp.41-50
    • /
    • 2010
  • We present a new technique for multilevel editing of hierarchical B-spline curves. At each level, control points of a displacement function are expressed in the rotation minimizing frames (RMFs) [1] which are computed on nodal points of the curve at previous level. When the curve is edited at previous level, the corresponding RMFs are updated and the control points of the displacement function at current level are applied to the new RMFs, which maintains the relative details of the curve at current level to those of previous level. We demonstrate the effectiveness and robustness of the proposed technique using several experimental results.

Numerical Simulation for the Quasi-static Behavior of Superelastic Nitinol Shape Memory Alloys (SMAs) (초탄성 니티놀 형상기억합금의 준정적 거동에 대한 수치해석적 재현)

  • Hu, Jong Wan
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.493-501
    • /
    • 2015
  • Superelastic shape memory alloys (SMAs) are metallic materials that can automatically recover to their original condition without heat treatment only after the removal of the applied load. These smart materials have been wildly applied instead of steel materials to the place where large deformation is likely to concentrate. In spite of many advantages, superelastic SMA materials have been limited to use in the construction filed because there is lack of effort and research involved with the development of the material model, which is required to reproduce the behavior of superelastic SMA materials. Therefore, constitutive material models as well as algorithm codes are mainly treated in this study for the purpose of simulating their hysteretic behavior through numerical analyses. The simulated curves are compared and calibrated to the experimental test results with an aim to verify the adequacy of material modeling. Furthermore, structural analyses incorporating the material property of the superelastic SMAs are conducted on simple and cantilever beam models. It can be shown that constitutive material models presented herein are adequate to reliably predict the behavior of superelastic SMA materials under cyclic loadings.

A Study on the Compensation of Thermal Errors for Phase Measuring Profilometry (PMP 형상 측정법의 열 변위 보정에 관한 연구)

  • Kim, Gi-Seung;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.598-603
    • /
    • 2019
  • Three-dimensional shape measurement technology is used in various industries. Among them, optical three-dimensional shape measurement techniques based on the optical trigonometry are mainly used in the field of semiconductor product inspection, where large quantities of three-dimensional shape measurements are made daily in factories and fine measurements are also required. The light source and the drive circuit, which are components of three-dimensional measurement equipment based on this optical trigonometry, produce heat generated by prolonged operation, and may be exposed to conditions where the ambient temperature is not constant, resulting in temperature-induced measurement errors. In this study, the compensation method of the Thermal Errors for Phase Measuring Profilometry is proposed. Three-Dimensional Shape Measurement Equipment based on Phase Measuring Profilometry is implemented to measure the height of an object and ambient temperature for 10 Hours, and a regression line was obtained line by making simple linear regression using measured temperature and height values. This regression line was used to correct the error of the height measurement according to the temperature, and thermal error was from 139.88 um(Micrometer) to 13.12 um.

Deformation Analysis of Excavated Behind Ground by The Artificial Displacement Method (II) - Numerical Analysis and Application - (강제변위법을 이용한 굴착배면지반의 변형해석(II) - 수치해석 및 적용성 -)

  • Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • The deformation behavior of the excavated behind ground due to the displacement shape of retention walls is predicted by numerical analysis, which can be performed using the artificial displacement method with elasto-plastic constitutive model. The displacement shape of the behind ground around the retention wall is similar to the displacement shape of the retention wall. However, far from the retention wall, it changes to the displacement shape of cantilever. The deformation (the settlement, the lateral movement) of the excavated behind ground can be decreased by restraining the upper displacement of the retention wall. The displacement shape of the retention wall due to excavation affects on the plastic failure zone and decreasing zone of stability of the excavated behind ground.

  • PDF