• Title/Summary/Keyword: 변위연성비

Search Result 192, Processing Time 0.021 seconds

Development of Precast Hollow Concrete Columns with Non-Shrink Mortar Grouting Type Splice Sleeve (무수축 모르타르 충진형 슬리브를 사용한 중공 프리캐스트 교각 개발)

  • Cho, Jae-Young;Lee, Young-Ho;Kim, Do-Hak;Park, Jong-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.215-225
    • /
    • 2011
  • In general, the precast columns can obtain its homogeneous quality as they are produced in a factory with a hollow concrete block type by using high strength concrete, so that they can generate the reduction of dead load. Such a method of precast hollow concrete columns is already implemented in USA and Japan and used for connecting between blocks which use PC tendons. However, it is inevitable to have uneconomical construction with excessive cost in early stage when PC tendons are used. This study aims to develop an economical precast column with high quality and constructability which consists of only splice sleeve and general reinforcing bar without using PC tendons in order to reduce the construction period and cost. To achieve this goal, this study tested the performance of total 5 minimized models in the experiment with the variables such as hollowness, diameter of main reinforcement bar and cross-sectional size for the cross section of precast column by using grouting type splice sleeve which is a new type joint rebar. And it also verified the performance of column in the experiment for a large-sized model in order to overview its applicability by excluding large scale effect.

Repeated Loading Test of Shear-Critical Reinforced Concrete Beams with Headed Shear Reinforcement (헤디드 바를 전단철근으로 사용한 철근콘크리트 보의 전단거동에 관한 반복하중 실험)

  • Kim, Young-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.47-56
    • /
    • 2006
  • The repeated loading responses of four shear-critical reinforced concrete beams with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}$ standard hooks, haying free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups with improved ductility, larger energy absorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.

A Study on the Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced UHPC and Inverted-T Steel Considering Compressive Strength Level (압축강도 수준을 고려한 강섬유 보강 UHPC와 역T형 강재 합성보의 휨거동 실험 연구)

  • Yoo, Sung-Won;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.677-685
    • /
    • 2015
  • In a will to subdue the brittleness as well as the low tensile and flexural strengths of ordinary concrete, researches are being actively watched worldwide on steel fiber-reinforced Ultra High Performance Concrete (UHPC) obtained by admixing steel fibers in ultra high strength concrete. For the purpose of maximizing advantage of UHPC, this study removes the upper flange of the steel girder to apply an inverted T-shape girder for the formation of the composite beam. This paper intends to evaluate the behavior of the shear connectors and the flexural characteristics of the composite beam made of the inverted T-shape girder and UHPC slab using 16 specimens considering the compressive strength of concrete, the mixing ratio of steel fiber, the spacing of shear connectors and the thickness of the slab as variables. In view of the test results, it seemed that the appropriate stud spacing should range between 100 mm and 2 or 4 times the thickness of the slab. Moreover, the relative displacement observed in the specimens showed that ductile behavior was secured to a certain extent with reference to the criteria for ductile behavior suggested in Eurocode-4. The specimens with large stud spacing exhibited larger values than given by the design formula and revealed that the shear connectors developed larger ultimate strength than predicted owing to the action of UHPC and steel after non-composite behavior. Besides, the specimens with narrow stud spacing failed suddenly through compression at the upper chord of UHPC before reaching the full capacity of the shear connectors.

An Optimum Slanting Angle in Reticulated Root Piles Installation under Compressive and Uplift Loads (압축 및 인발하중을 받는 그물식 뿌리말뚝의 최적 타설경사각)

  • 이승현;김명보
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-84
    • /
    • 1996
  • In order to investigate the influence of slanting angle of reticulated root piles(RRP) on their bearing capacities, model tests of compressive and uplift loads on RRP with different slanting angles, which were installed in sandy soils with a relative density of 47%, were carried out. Each pile which is made of a steel bar of 5mm in diameter and 300mm in length, is coated with sand to be 6.5mm in diameter. One set of RRP consists of 8 piles which are installed in circular patterns forming two concentric circles, each of which has 4 piles. Slanting angles of RRP for load tests are 0$^{\circ}$, 5$^{\circ}$, 10$^{\circ}$, 15$^{\circ}$, 20$^{\circ}$, and 25$^{\circ}$. In addition, compressive load tests on circular footing whose diameter is the same as the outer circle of RRP were carried out. Test results show that maximum load bearing capacities of RRP by regression analysis are obtained at about 12$^{\circ}$ and 13$^{\circ}$ of slanting angles for compressive and uplift load tests, respectively. Maximum compressive bearing capacity is estimated to be 13oA bigger than that of the vertical RRP and 95% bigger than that of surface footing. Maximum uplift capacity is estimated to be 21% bigger than that of the vertical RRP. And it can be appreciated that increasing the slanting angle makes the load -Settlement behavior more ductile.

  • PDF

An Experimental Study on Seismic Performance Evaluation of Retrofitted Column of FRP Seismic Reinforcement that can be Emergency Construction (긴급시공이 가능한 FRP 내진보강재로 보강된 기둥의 내진성능평가 실험)

  • Kim, Jin-Sup;Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Dong-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.21-30
    • /
    • 2013
  • As increasing number of large-size earthquake, the social interest of seismic retrofitting of RC structure is growing. Especially, the RC columns that are not reflected seismic design can not resist lateral loads by the earthquake. The brittle fracture of Non-seismic designed columns lead to full collapse of the building. Thus, the emergency columns reinforcement method is needed. That have a fast construction time, do not cause damage to the column. In the past, cross-sectional expansion method, a steel plate reinforcing method is applied mainly, but in recent years, carbon fiber sheet taking advantage of FRP (Fiber Reinforced Polymer) is widely used. In this study, retrofitting effect of seismic performance of FRP seismic reinforcement, which is possible to emergency construction, was examined. Reinforced concrete specimens were constructed to experimental study. The seismic performence of specimes retrifitted with FRP seismic reinforcement were evaluated. As a result, the seismic performance of specimen reinforced with FRP seismic reinforcement has been improved.

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

Experimental Curvature Analysis of Reinforced Concrete Piers with Lap-Spliced Longitudinal Steels subjected to Seismic Loading (지진하중을 받는 주철근 겹침이음된 철근콘크리트 교각의 곡률분석)

  • Chung, Young-Soo;Park, Chang-Kyu;Song, Hee-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.41-49
    • /
    • 2006
  • Through the 1982 Urahawa-ohi and the 1995 Kobe earthquakes, a number of bridge columns were observed to develop a flexural-shear failure due to the bond slip as a consequence of premature termination of the column longitudinal reinforcement. Because the seismic behavior of RC bridge piers is largely dependent on the performance of the plastic hinge legion of RC bridge piers, it is desirable that the seismic capacity of RC bridge pier is to evaluate as a curvature ductility. The provision for the lap splice of longitudinal steel was not specified in KHBDS(Korea Highway Bridge Design Specification) before the implementation of 1992 seismic design code, but the lap splice of not more than 50%, longitudinal reinforcement was newly allowed in the 2005 version of the KHBDS. The objective of this research is to investigate the distribution and ductility of the curvature of RC bridge column with the lap splice of longitudinal reinforcement in the plastic hinge legion. Six (6) specimens were made in 600 mm diameter with an aspect ratio of 2.5 or 3.5. These piers were cyclically subjected to the quasi-static loads with the uniform axial load of $P=0.1f_{ck}A_g$. According to the slip failure of longitudinal steels of the lap spliced specimen by cyclic loads, the curvatures of the lower and upper parts of the lap spliced region were bigger and smaller than the corresponding paris of the specimen without a lap splice, respectively. Therefore, the damage of the lap spliced test column was concentrated almost on the lower part of the lap spliced region, that appeared io be failed in flexure.

Cyclic Structural Characteristics of Thermal Bridge Breaker Systems embedded in Reinforced Concrete Slabs (벽-슬래브 접합부에 매립된 열교차단장치의 반복하중에 대한 거동특성 평가)

  • Shin, Dong-Hyeon;Oh, Moung-Ho;Kim, Young-Ho;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.511-521
    • /
    • 2015
  • The thermal bridge occurring in a building influences its thermal performance and durability. The domestic typical multi-unit residential buildings suffer thermal losses resulting from thermal bridges of the balcony slab. To minimize the thermal loss between inside and outside of the balcony slab, thermal bridge breaker(TBB) systems have been developed and applied in building construction. Although thermal bridge breaker systems for reinforced concrete(RC) wall-slab joints can improve the thermal performance of a building, it is necessary to verify the structural performance of TBB systems whether they provide proper resistance for cyclic loading. In order to investigate the structural characteristics of TBB systems embedded in RC slabs, cyclic tests of wall-slab joints were performed by applying two reversed cycles at each up to 30 cycles. The test results show that the RC slabs embedding TBBS systems can present excellent structural performance and the maximum moment capacity, energy dissipation capacity and ductility of TBBs systems are enhanced compared to those of the typical RC slabs.

Vibration Reduction Effect and Structural Behavior Analysis for Column Member Reinforced with Vibration Non-transmissible Material (진동절연재로 보강된 기둥부재의 진동저감효과 및 구조적 거동분석)

  • Kim, Jin-Ho;Yi, Na-Hyun;Hur, Jin-Ho;Kim, Hee-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • For elevated railway station on which track is connected with superstructure of station, structural vibration level and structure-borne-noise level has exceeded the reference level due to structural characteristics which transmits vibration directly. Therefore, existing elevated railway station is in need of economical and effective vibration reduction method which enable train service without interruption. In this study, structural vibration non-transmissible system which is applied to vibroisolating material for column member is developed to reduce vibration. That system is cut covering material of the column section using water-jet method and is installed with vibroisolating material on cut section. To verify vibration reduction effect and structural performance for structural vibration non-transmissible system, impact hammer test and cyclic lateral load test are performed for 1/4 scale test specimens. It is observed that natural period which means vibration response characteristics is shifted, and damping ratio is increased about 15~30% which means that system is effective to reduce structural vibration through vibration test. Also load-displacement relation and stiffness change rate of the columns are examined, and it is shown that ductility and energy dissipation capacity is increased. From test results, it is found that vibration non-transmissible system which is applied to column member enable to maintains structural function.

Impact Evaluation of Rubber Type, Hardness and Induced Prestress Force on the Dynamic Properties of a Damper (감쇠장치의 동적특성에 대한 고무의 종류, 경도 및 프리스트레스력의 영향 평가)

  • Im, Chae-Rim;Yang, Keun-Hyeok;Mun, Ju-Hyun;Won, Eun-Bee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.167-174
    • /
    • 2022
  • The objective of this study is to evaluate the dynamic properties of DUS (damping-up system) composed of the materials with excellent damping capacity, and to compare with those of the conventional hangar bolt. The main parameters are the type and hardness (𝜂H), of rubber and the prestress force (value converted from the compression strain (𝜂R) in the stress-strain relationship of rubber). The dynamic properties were examined from the natural frequency (𝜔n), maximum response acceleration (Am), amplification coefficient (𝛼p), maximum relative displacement (𝚫m), and damping ratio (𝜉D). The test results showed that the Am, 𝛼p, and 𝚫m values of DUS were 46.3%, 46.6% and 62.9% lower, respectively, and the 𝜉D value was 3.89 times higher, when compared to those of the conventional hangar bolt. In particular, the 𝛼p value was 1.3 for DUS, and 2.45 for the conventional hanger bolt, which were similar to those of rigid and flexible components specified in KDS 41 17 00, respectively. Consequently, in the optimal details of DUS, the 𝜂H values of 50 and 45 were required for the NR (natural rubber) and EPDM (ethylene propylene diene monomer), and the 𝜂R value of 5% was also recommended.