• Title/Summary/Keyword: 변위설계

Search Result 1,648, Processing Time 0.023 seconds

A Study on the Design of the Free-Piston Stirling Engine/Alternator (자유 피스톤 스털링엔진/발전기의 설계 인자 연구)

  • Park, Seongje;Hong, Yongju;Ko, Junseok;Kim, Hyobong;Yeom, Hankil;In, Sehwan;Kang, Insu;Lee, Cheongsu
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.648-655
    • /
    • 2014
  • This paper describes the continuing effort to develope a single acting free-piston Stirling engine/alternator combination for use of the household cogeneration. Free piston Stirling engines(FPSE) use variations of working gas pressure to drive mechanically unconstrained reciprocating elements. Stirling cycle free-piston engines are driven by the Stirling thermodynamic cycle which is characterized by an externally heated device containing working gas that is continuously re-used in a regenerative, reversible cycle. The ideal cycle is described by two isothermal process connected by two constant volume processes. Heat removed during the constant volume cooling process is internally transferred to the constant volume heating process by mutual use of a thermal storage medium called the regenerator. Since the ideal cycle is reversible, the ideal efficiency is that of Carnot. Free-piston Stirling engine is have no crank and rotating parts to generate lateral forces and require lubrication. The FPSE is typically comprised of two oscillating pistons contained in a common cylinder. The temperature difference across the displacer maintains the oscillations, and the FPSE operate at natural frequency of the mass-spring system. The power is generated from a linear alternator. The purpose of this paper is to describe the design process of the single acting free-piston Stirling engine/alternator. Electrical output of the single acting free-piston Stirling engine/alternator is about 0.95 kW.

A Study on the Design of Functional Clothing for Vital sign Monitoring -Based on ECG Sensing Clothing- (생체신호 측정을 위한 기능성 의류의 디자인 연구 -심전도 센싱 의류를 중심으로-)

  • Cho, Ha-Kyung;Song, Ha-Young;Cho, Hyeon-Seong;Goo, Su-Min;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.467-474
    • /
    • 2010
  • Recently, Study of functional clothing for Vital sensing is focused on reducing artifact by human motions, in order to enhance the electrocardiogram(ECG) sensing accuracy. In this study, considering the factors for each element found from the analysis, a 3-lead electrode inside textile embroidered with silver yarn was developed, and draft designs off our types of vital-signal sensing garments, which are 'chest-belt typed' garment, 'cross-typed' garment 'x-typed' garment and 'curved x-typed' garment, were prepared. The draft designs were implemented on a sleeveless male shirt made of an elastic material so that the garment and the electrodes can remain closely attached along the contour of the human body, and the acquired data was sent to the main computer over a wireless network. In order to evaluate the effects caused by body movements and the ECG-sensing capability for each type in static and dynamic states, displacements were measured from one and two dimensional perspectives. ECG measurement evaluation was also performed for Signal-to-noise ratio(SNR) analysis. Applying the experimental results, the draft garment designs were modified and complemented to produce two types of modular approaches 'continuous-attached' and 'insertion-detached' for the ECG-sensing smart clothing.

  • PDF

Numerical Study on the Behavior of Fully Grouted Rock Bolts with Different Boundary Conditions (경계조건의 변화에 따른 전면접착형 록볼트 거동의 수치해석적 연구)

  • Lee, Youn-Kyou;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.267-276
    • /
    • 2010
  • In modern rock engineering practice, fully grouted rock bolting is actively employed as a major supporting system, so that understanding the behavior of fully grouted rock bolts is essential for the precise design of rock bolting. Despite its importance, the supporting mechanism of rock bolts has not been fully understood yet. Since most of existing analytical models for rock bolts were developed by drastically simplifying their boundary conditions, they are not suitable for the bolts of in-situ condition. In this study, 3-D elastic FE analysis of fully grouted rock bolts has been conducted to provide insight into the supporting mechanism of the bolt. The distribution of shear and axial stresses along the bolt are investigated with the consideration of different boundary conditions including three different displacement boundary conditions at the bolt head, the presence of intersecting rock joints, and the variation of elastic modulus of adjacent rock. The numerical result reveals that installation of the faceplate at the bolt head plays an important role in mobilizing the supporting action and enhancing the supporting capabilities of the fully grouted rock bolts.

A Study on Applicability of Tensile Constitutive Model of Steel Fiber Reinforced Concrete in Model Code 2010 (Model Code 2010에 제시된 강섬유 보강 콘크리트의 인장 구성모델 적용성 고찰)

  • Yeo, Dong-Jin;Kang, Duk-Man;Lee, Myung-Seok;Moon, Do-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.581-592
    • /
    • 2016
  • Tensile constitutive stress-strain model of steel fiber reinforced concrete (SFRC) in fib MC2010 was investigated. In order to model tensile behavior of SFRC, three point loading flexural tests were conducted on notched small beams according to BE-EN-14651. Design parameters for the constitutive model were determined from the flexural tests. Flexural test and finite element analysis were conducted on large SFRC beam without steel reinforcements and compared with each other. In addition, parametric study on the effect of compressive and tensile model, and characteristic length on flexural behavior of the SFRC beam was conducted also. In results, pre-peak load-displacement curves from the FE analysis was close to experimental curves but significant difference was shown in post-peak behavior. The reason of the difference is originated from the fact that the fiber distribution and orientation were not being properly considered in the MC2010 model. This study shows that modification and detail explanations on the orientation factor K in MC2010 might require to better reproduce the behaviour of large scale SFRC beams.

Study of the Assembly of Indoor Air-conditioner Unit Using Tolerance Analysis (공차해석을 이용한 에어컨 실내기의 조립성에 관한 연구)

  • Kim, Cheulgon;Hwang, Jihoon;Seo, Hyeongjoon;Mo, Jinyong;Jung, Duhan;Hong, Seokmoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.423-428
    • /
    • 2015
  • To identify locations and causes of interference among parts of an indoor air-conditioning unit, a 3D tolerance analysis was performed and optimized with respect to assembly gaps and the tolerance of each part. The maximum value of the defect rate resulting from the tolerance analysis was found to be 72.6 at the assembly portion of the body and drain. The maximum displacement caused by the thermal deformation during a heating operation was calculated to be approximately 1 mm by using finite element analysis (FEA). Therefore, it is possible that an interference among the assembled parts occurs. The tolerance of the drain was modified by the results of the sensitivity analysis. As a result, the defect rate was greatly reduced to 0.03. Through the FEA results of the indoor air-conditioning unit, it was shown that the improved tolerance of the drain decreased the interference among the assembled parts even though thermal deformation occurs during operation.

Cyclic Loading Test for TSC Beam - PSRC Column Connections (TSC 합성보 - PSRC 합성기둥 접합부에 대한 주기하중 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the present study, details of the TSC beam-to-PSRC column connection for low and middle seismic zones were developed. For ease construction, the top and bottom flanges of the steel section of the TSC beam were discontinuous at the joint face on purpose, while the web passes through the joint. Thus, tensile resistance of the top and bottom flanges is not considered in the calculation of nominal strength of the connection. Cyclic loading tests on two interior connections and an exterior connection were performed to verify the seismic performance. The test parameter for two interior connections was the depth of the TSC beams: 600 and 700 mm including the slab depth. The test results showed that the nominal strength of the connections predicted by KBC 2009 correlated well with the test results. The connection specimens exhibited relatively good deformation and energy dissipation capacities, greater than the requirements for the ordinary and intermediate moment frames. Ultimately, the connection specimens were failed at the story drift ratios of 3.0 to 4.0 % due to local buckling and tensile fracture of the web of the TSC beam passing through the joint. By modifying the existing provisions of ASCE, the joint shear strength of the TSC beam-PSRC column connection was evaluated.

Identifying Risk Management Locations for Synthetic Natural Gas Plant Using Pipe Stress Analysis and Finite Element Analysis (배관응력해석 및 유한요소해석에 의한 SNG플랜트의 리스크 관리 위치 선정)

  • Erten, Deniz Taygun;Yu, Jong Min;Yoon, Kee Bong;Kim, Ji Yoon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • While they are becoming more viable, synthetic natural gas (SNG) plants, with their high temperatures and pressures, are still heavily dependent on advancements in the state-of-the-art technologies. However, most of the current work in the literature is focused on optimizing chemical processes and process variables, with little work being done on relevant mechanical damage and maintenance engineering. In this study, a combination of pipe system stress analysis and detailed local stress analysis was implemented to prioritize the inspection locations for main pipes of SNG plant in accordance to ASME B31.3. A pipe system stress analysis was conducted for pre-selecting critical locations by considering design condition and actual operating conditions such as heat-up and cool-down. Identified critical locations were further analyzed using a finite element method to locate specific high-stress points. Resultant stress values met ASME B31.3 code standards for the gasification reactor and lower transition piece (bend Y in Fig.1); however, it is recommended that the vertical displacement of bend Y be restricted more. The results presented here provide valuable information for future risk based maintenance inspection and further safe operation considerations.

Uplift Capacity of Spiral Bar through the Model Experiment (모형실험을 통한 스파이럴 기초의 인발저항력 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Kim, Ha Neul;Lee, Si Young;Kang, Dong Hyeon;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.202-209
    • /
    • 2015
  • This study compared and analyzed the measurements of pullout load according to the depth of reclamation in the foundation, compaction ratio of soil, spiral diameter, and soil textures in an experiment with a model and reached the following conclusions: The comparison results of extreme pullout load between farm and reclaimed soil show that farmland soil recorded a score that was 1.2~3 times higher than that of reclaimed soil. The investigator measured pullout load in farmland and reclaimed soil and observed a tendency of rising extreme pullout load according to the increasing depth of reclamation and compaction ratio with a similar load-displacement curve between the two types of soil. Extreme pullout load made a greater increase by the rising size of diameter than the increasing depth of reclamation, also making a considerably bigger increase according to the rising compaction ratio than the other conditions. Therefore, the spirals bar is expected to be available in soft soil foundation, as well as farmland as increasing buried deep of foundations, compaction rate, diameter of the spiral, ect.

OPTIMAL DEELECTION OF EARTH-CROSSING OBJECT USING A THREE-DIMENSIONAL SINGLE IMPULSE (3차원에서의 순간적인 속도변화에 의한 ECO의 최적궤도변경)

  • Mihn, Byeong-Hee;Park, Sang-Young;Roh, Kyoung-Min;Choi, Kyu-Hong;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.249-262
    • /
    • 2005
  • Optimization problems are formulated to calculate optimal impulses for deflecting Earth-Crossing Objects using a Nonlinear Programming. This formulation allows us to analyze the velocity changes in normal direction to the celestial body's orbital plane, which is neglected in many previous studies. The constrained optimization in the three-dimensional space is based on a patched conic method including the Earth's gravitational effects, and yields impulsive ${\Delta}V$ to deflect the target's orbit. The optimal solution is dependent on relative positions and velocities between the Earth and the Earth-crossing objects, and can be represented by optimal magnitude and angle of ${\Delta}V $ as a functions of a impulse time. The perpendicular component of ${\Delta}V $ to the orbit plane can sometimes play un-negligible role as the impulse time approaches the impact time. The optimal ${\Delta}V $ is increased when the original orbit of Earth-crossing object is more similar to the Earth's orbit, and is also exponentially increased as the impulse time reaches to the impact time. The analyses performed in present paper can be used to the deflection missions in the future.

A numerical study on pull-out behaviour of cavern-type rock anchorages (수치해석에 의한 암반상의 지중정착식 앵커리지 인발 거동 연구)

  • Hong, Eun-Soo;Cho, Gye-Chun;Baak, Seng Hyoung;Park, Jae-Hyun;Chung, Moonkyung;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.521-531
    • /
    • 2014
  • This paper is a study for behaviour of cavern type anchorage tunnels for suspension bridges with cable tension. Anchorage behaviour, design method for anchorage, and failure surface angle, ${\delta}$ are analyzed by comparing numerical analysis results and ultimate pullout capacities($P_u$) using bilinear corelation equation. Results show that design depths for cavern type anchorage tunnels are easily checked with linear relationships for $P/{\gamma}/H$ vs. displacement and $P_u/{\gamma}/H$ vs. H/b. The analysis results of maximum shear strain distribution and plastic status show that failure shapes are closer to circular arc model than soil cone model which frequently used. To an easy calculation of the ultimate pullout capacity, we propose a simple bilinear failure model in this study. The calculated ultimate pullout capacities from the proposed bilinear corelation equation using two failure angles results are similar to the ultimate pullout capacities from numerical analysis.