• Title/Summary/Keyword: 변위계수법

Search Result 215, Processing Time 0.024 seconds

A Theoretical and Experimental Study on Forming Limits in the Flanging Processes (플랜징 공정 의 성형한계 에 대한 이론 및 실험적 연구)

  • 양동열;박승교
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.777-787
    • /
    • 1985
  • The study is concerned with the analysis of flanging as a sheet metal working process. In terms of mechanics, the flanging process can be divided into two groups, i.e, shrink flanging and stretch flanging. In this study, the shrink flanging process is analyzed by using the proposed energy criterion and the forming limit is found for the process. The forming limit for stretch flanging is also found by employing the neckind theory. Experiments are carried out for both processes. Approximate forming limits are obtained from the experiments. An approximate method to calculate the punch force is proposed and the computed results are compared with the experimental results. It is shown that there are good agreements in forming limits and punch forces between theory and experiments.

The Vibration Characteristic Improvement by Mode Variation of Ring Type Ultrasonic Motor (리형 초음파모터의 모드가변에 따른 진동특성 개선)

  • 윤신용;김수석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.115-124
    • /
    • 2004
  • This paper suggested the vibration characteristic improvement by variation mode of ring type ultrasonic motor. Design for the piezoelectric ceramic and elastic body of stator were calculated by the finite element method(FEM) that consider the resonance frequency, vibration mode and coupling efficiency etc. Through the result of vibration analysis from 6 order mode to 8 mode, the 7 order mode was gained very an excellent results that it was the coupling efficient, minimum power loss and bending vibration value. Here over 7 order mode, was acquired that an output current for input voltage was very a large increased results. The result of vibration calculation, from thickness 0.5[mm] to 2[mm], know the fact that the vibration displacement at 0.5[mm] is an high value too. From such analysis result, this paper was manufactured the ultrasonic motor of outer diameter 50[mm], inter 22[mm] having the about 43.86[KHz] resonance frequency. We have gated that a simulation result is 42.2[KHz] and an experiment result is 43.86[KHz]. Then, a propriety of this paper was established the result almost similar to though comparison, investigation of simulation and experiment result.

Numerical Analysis of the Mechanical and Hydraulic behavior of Concrete Plug in Underground Storage Cavern (지하저장공동에서의 콘크리트 플러그의 역학적 및 수리적 거동에 관한 수치해석적 연구)

  • 박병기;이희근;전석원;박의섭
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.93-103
    • /
    • 2000
  • The concrete plug in an underground cavern prevents the stored product (oil, gas, etc) from leaking and the excessive show of underground water, so it plays an important role in construction and operation of the storage cavern. Additionally, it should maintain its stability under every possible loading condition. Once the plug is constructed, the cavern is isolated from the external access. Therefore, mechanical and hydraulic consideration should be made in construction to fulfill its function. Therefore, in this study, numerical analyses were conducted to study the optimal shape and thickness of the plug with respect to the various conditions of installation depth, the shape of the plug, in-situ stress ratio (K), the condition of rock-plug interface, and the effect of Excavation Damaged Zone (EDZ). This paper also presents the effect of slot depth on the hydraulic behavior of the plug. These analyses were carried out by using the 2-dimensional finite difference code, rm FLAC, and the 3D code, m FLA $C^{3D}$./.

  • PDF

Numerical Analysis of the Mechanical and Hydraulic behavior of Concrete Plug in Underground Storage Cavern (지하저장공동에서의 콘크리트 플러그의 역학적 및 수리적 거동에 관한 수치해석적 연구)

  • 박병기;이희근;전석원;박의섭
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.344-354
    • /
    • 2000
  • The concrete plug in an underground cavern prevents the stored product (oil, gas, etc) from leaking and the excessive inflow of underground water, so it plays an important role in construction and operation of the storage cavern. Additionally, it should maintain its stability under every possible loading condition. Once the plug is constructed, the cavern is isolated from the external access. Therefore, mechanical and hydraulic consideration should be made in construction to fulfill its function. Therefore, in this study, numerical analyses were conducted to study the optimal shape and thickness of the plug with respect to the various conditions of installation depth, the shape of the plug, in-situ stress ratio (K), the condition of rock-plug interface, and the effect of Excavation Damaged Zone (EDZ). This paper also presents the effect of slot depth on the hydraulic behavior of the plug. These analyses were carried out by using the 2-dimensional finite difference code, rm FLAC, and the 3D code, rm FLAC$\^$3D/.

  • PDF

A Study of the Influence of Strain Gauge Location and Contact Conditions by Loading Platens on the Mechanical Behavior of Rock Specimens (암석공시체의 역학적 거동 해석에 미치는 변형율게이지 위치 및 단면구속 영향에 대한 연구)

  • 정교철
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.215-224
    • /
    • 1998
  • In this study, total strain was measured by LVDTs and local strains on the surface of specimens were measured by strain gauges. And axi-symmetrically elastoplastic FEM analyses was carried out for cylindrical specimens. Considering the influence of the restraint induced by the loading platen, in the case of H/D=1, the strain distribution on the side of a specimen is obviously affected by the condition of platen contact. Furthermore, it is clear that the larger H/D ratio becomes, the smaller the influence to the strain distribution is. For the smooth contact condition, the strain on the side is not influenced by the stiffness of the specimen, the shape and the scale effect, the strain distribution coincides with the nominal total strain. Whereas, in the case of rough contact condition, the strain distribution is remarkably affected. It is made clear that strain responses of hard rock specimens may more sensitive than these of soft rock specimens as a results of interaction between loading platens and specimen and the uniaxial strength of specimens may strongly depends on this interaction and stress-strain relation is affected by the contact condition.

  • PDF

Stress History Evaluation for Truss Bridge with Local Damages by Using Global-Local Model Combination (전체해석과 국부해석 조합법을 이용한 국부결함이 있는 트러스교 응력이력해석)

  • Kim, Hyo-Jin;Park, Sang-il;Bae, Gi-Hoon;Lee, Sang-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • This study predicts the stress history for truss bridge with local damages by using global-local model combination method. For this end, the global structure is modeled by 3D frame elements and the selected local details are modeled by shell elements. Then superposition principle enable the global-local model to be combined interactively. Because the frame model cannot consider the rigidity of gusset plate and the interation of structural members due to the complexity of stress distribution in truss connection. The section modification factors are proposed to calibrate the stiffness of global frame element. The global-local model combination is verified by comparing the numerical results with experimental data obtained from the proof loading test to the operating truss bridge. Furthermore, stress histrories of the truss bridge are generated in the consideration of the rigidity of truss connection with local damage by using the combination method.

  • PDF

Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefiable Sand (액상화 가능한 지반에 근입된 지반-말뚝-구조물 동적 상호작용의 수치 모델링)

  • Kwon, Sun-Yong;Yoo, Min-Taek;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.29-38
    • /
    • 2018
  • Three-dimensional continuum modeling of dynamic soil-pile-structure interaction embedded in a liquefiable sand was carried out. Finn model which can model liquefaction behavior using effective stress method was adopted to simulate development of pore water pressure according to shear deformation of soil directly in real time. Finn model was incorporated into Non-linear elastic, Mohr-Coulomb plastic model. Calibration of proposed modeling method was performed by comparing the results with those of the centrifuge tests performed by Wilson (1998). Excess pore pressure ratio, pile bending moment, pile head displacement-time history according to depth calculated by numerical analysis agreed reasonably well with the test results. Validation of the proposed modeling method was later performed using another test case, and good agreement between the computed and measured values was observed.

Finite Element Dynamic Analysis of a Vertical Pile by Wave and Tidal Current (파도와 조류에 의한 수직 파일의 유한요소 동적거동 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.183-192
    • /
    • 2004
  • New dynamic analysis procedures lot the vertically drilled sea water pile are suggested and demonstrated by the typical design Problem. Pile structure submerged in the sea water as well as forces by the ocean waves and tidal currents are modeled and formulated by finite element method. To obtain wave forces for the finite element equation, Airy's wave theory is tested and selected among others. Lateral lifting forces induced by the vortex shedding of current flow is simply based on the harmonic function with the Strouhal frequency and lifting coefficient. Natural frequencies and frequency responses for the pile are calculated by NASTRAN using the results of the formulation. Dynamic displacement and stress results obtained by these procedures are shown to be applicable to predict the dynamic behaviors of the ocean pile by the wave and lifting forces as a preliminary design analysis.

A Comparative Study on Structural Performance of Wind Turbine Composite Blades with Room-Temperature and Radiation Curing (상온 및 방사선 경화 복합재 풍력 블레이드의 구조성능 비교)

  • Jeon, Jae Heung;Kim, Sung Jun;Shin, Eui Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • In this paper, cross-sectional stiffnesses, static stresses, and dynamic natural frequencies are analyzed to examine the structural performance of wind turbine composite blades. The material properties of composite materials are based on room-temperature and radiation curing processes. The cross-sectional stiffnesses of composite blades are calculated by applying a beam theory with solid-profile cross sections. The wind turbine blades are modeled with a finite element program, and static analyses are carried out to check the maximum displacement and stress of the blades. In addition, dynamic analyses are performed to predict the rotating natural frequencies of the composite blades including the effects of centrifugal force. By comparing these analysis results, mainly owing to the material properties of composite materials, an improvement in the structural performance of the blades according to the curing process is investigated.

Sensitivity Improvement of Shadow Moiré Technique Using LED Light and Deformation Measurement of Electronic Substrate (LED 광을 이용한 그림자 무아레 방법의 감도 향상 및 모바일 전자 기판의 변형 측정)

  • Yang, Heeju;Joo, Jinwon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.141-148
    • /
    • 2019
  • Electronic substrates used in a mobile device is composed of various materials, and when the temperature is changed during manufacturing or operating, thermal deformation and stress concentration occur due to the difference in thermal expansion coefficient of each material. The shadow moiré technique is a non-contact optical method that measures shape or out-of-plane displacement over the entire area, but it is necessary to overcome the Talbot effect for high sensitivity applications. In this paper, LED light sources of various wavelengths was used to overcome the Talbot effect caused in the shadow moiré technique. By using the phase shift method, an experimental method to retain the measurement sensitivity within 10 ㎛/fringe was proposed and evaluated, and this method is applied to the thermal deformation measurement of the mobile electronic substrate. In the case of using white light, there were several areas that could not be measured due to the Talbot effect, but in the case of using blue LED light, it was shown that a precise moiré pattern with a sensitivity of 6.25 ㎛/fringe could be obtained in most areas.