• Title/Summary/Keyword: 변성작용의 온도-압력

Search Result 54, Processing Time 0.022 seconds

Fluid Inclusions Trapped in Xenoliths from the Lower Crust/upper Mantle Beneath Jeju Island (I): A Preliminary Study (제주도의 하부지각/상부맨틀 기원의 포획암에 포획된 유체포유물: 예비연구)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.34-45
    • /
    • 2004
  • This paper describes the textural relations of mantle xenoliths and fluid inclusions in mantle-derived rocks found in alkaline basalts from Jeju Island which contain abundant ultramafic, felsic, and cumulate xenoliths. Most of the ultramafic xenoliths are spinel-lherzolites, composed of olivine, orthopyroxene, clinopyroxene and spinel. The felsic xenoliths considered as partially molten buchites consist of quartz and plagioclase with black veinlets, which are the product of ultrahigh-temperature metamorphism of lower crustal materials. The cumulate xenoliths, clinopyroxene-rich or clinopyroxene megacrysts, are also present. Textural examination of these xenoliths reveals that the xenoliths are typically coarse grained with metamorphic characteristics, testifying to a complex history of evolution of the lower crust/upper mantle source region. The ultramafic xenoliths contain protogranular, porphyroclastic and equigranular textures with annealing features, indicating the presence of shear regime in upper mantle of the Island. The preferential associations of spinel and olivine with large orthopyroxenes suggest a previous high temperature equilibrium in the high-Al field and the original rock-type was a Al-rich orthopyroxene-bearing peridotite without garnet. Three types of fluid inclusions trapped in mantle-derived xenoliths include CO$_2$-rich fluid (Type I), multiphase silicate melt (glass ${\pm}$ devitrified crystals ${\pm}$ one or more daughter crystals + one or more vapor bubbles) (Type II), and sulfide (melt) inclusions (Type III). C$_2$-rich inclusions are the most abundant volatile species in mantle xenoliths, supporting the presence of a separate CO$_2$-rich phase. These CO$_2$-rich inclusions are spatially associated with silicate and sulfide melts, suggesting immiscibility between them. Most multiphase silicate melt inclusions contain considerable amount of silicic glass. reflecting the formation of silicic melts in the lower crust/upper mantle. Combining fluid and melt inclusion data with conventional petrological and geochemical information will help to constrain the fluid regime, fluid-melt-mineral interaction processes in the mantle of the Korean Peninsula and pressure-temperature history of the host xenoliths in future studies.

Relationships between Micronutrient Contents in Soils and Crops of Plastic Film House (시설재배 토양과 작물 잎 중의 미량원소 함량 관계)

  • Chung, Jong-Bae;Kim, Bok-Jin;Ryu, Kwan-Sig;Lee, Seung-Ho;Shin, Hyun-Jin;Hwang, Tae-Kyung;Choi, Hee-Youl;Lee, Yong-Woo;Lee, Yoon-Jeong;Kim, Jong-Jib
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.217-227
    • /
    • 2006
  • Micronutrient status in soils and crops of plastic film house and their relationship were investigated. Total 203 plastic film houses were selected (red pepper, 66; cucumber, 63; tomato, 74) in Yeongnam region and soil and leaf samples were collected. Hot-water extractable B and 0.1 N HCl extractable Cu, Zn, Fe, and Mn in soil samples and total micronutrients in leaf samples were analyzed. Contents Zn, Fe, and Mn in most of the investigated soils were higher than the upper limits of optimum level for general crop cultivation. Contents of Cu in most soils of cucumber and tomato cultivation were higher than the upper limit of optimum level, but Cu contents in about 30% of red pepper cultivation soils were below the sufficient level. Contents of B in most soils of cucumber and tomato were above the sufficient level but in 48% of red pepper cultivation soils B were found to be deficient. Micronutrient contents in leaf of investigated crops were much variable. Contents of B, Fe, and Mn were mostly within the sufficient levels, while in 71% of red pepper samples Cu was under deficient level and in 44% of cucumber samples Cu contents were higher than the upper limit of sufficient level. Contents of Zn in red pepper and cucumber samples were mostly within the sufficient level but in 62% of tomato samples Zn contents were under deficient condition. However, any visible deficiency or toxicity symptoms of micronutrients were not found in the crops. No consistent relationships were found between micronutrient contents in soil and leaf, and this indicates that growth and absorption activity of root and interactions among the nutrients in soil might be important factors in overall micronutrient uptake of crops. For best management of micronutrients in plastic film house, much attention should be focused on the management of soil and plant characteristics which control the micronutrient uptake of crops.

Studies on the Geology and Geochemistry in the Beonam Mine, Korea (전북 번암광산의 지질과 지화학적 연구)

  • Chung, Jae-Il;Na, Choon-Ki;Lee, Young-Up;Jeon, Seo-Ryeong;Kim, Seon-Young
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.623-633
    • /
    • 1995
  • The Beonam deposits which is located in south-western part of Sobaeksan massif are emplaced along $N20{\sim}30^{\circ}E$ trending fissures in Precambrian Sobaeksan gneiss complex. Surrounding granites are inferred to be differentiated and formed from calc-alkaline magma which was generated from remelting or partial melting of the crustral material having igneous composition. The Sr isotope data of ore minerals showing significantly low initial Sr value relative to those of surrounding granite batholiths suggest that the ore-bearing fluid formed the Beonam Au-Ag mine are isotopically distinct from those of the wall rocks, and it indicates that there is no evidence of genetic relationship between ore-bearing fluids and surrounding granites, although further study should be needed. The results of paragenetic studies suggest three stages of hydrothermal mineralization; stage I: base-metal sulfides stage, stage II: late base-metal sulfides, electrum and silver-bearing sulfosalts stage, stage III: minor silverbearing minerals, barren quartz and carbonates stage. The temperature, salinity and pressure of the Beonam deposits estimated from mineral assemblage, chemical composition, fluid inclusion and sulfur isotope geothermometry are as follows; stage I: $200{\sim}315^{\circ}C$, 3.5~6.5 NaCl eq. wt%, 0.28~0.61 Kbar, stage II: $150{\sim}235^{\circ}C$, 4.5~7.4 NaCl eq. wt%, 0.11~0.15 Kbar. The estimated oxygen and sulfur fugacity during first stage mineralization, based on phase relation of associated minerals, range from $10^{35.1}{\sim}10^{-39.7}$ atm. and $10^{-11.0}{\sim}10^{-13.4}$ atm., respectively. All these evidences suggest that the Beonam deposits are polymetallic meso-epithermal ore deposits.

  • PDF

Fluid Inclusion and Sulfur Stable Isotope of Buckchang Deposit, Korea (북창광상의 유체포유물 및 황안정동위원소 연구)

  • Chung, Jae-Il;Kim, Seon-Young;Na, Choon-Ki;Lee, In-Sung;Ripley, E.M.
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.677-687
    • /
    • 1996
  • The Buckchang deposits which is located in the Ockcheon metamorphic zone, are emplaced along $N20-30^{\circ}E$ trending fissure sets. So it is a sort of fissure-filling ore deposits. The results of mineral paragenetic studies suggest two stages of hydrothermal mineralization; stage I: base-metal sulfides stage, stage II: late base-metal sulfides, electrum and silver-bearing sulfosalts stage. The silver-bearing sulfosalts occured as the Buckchang mine are mainly argentite and, minor of canfieldite, tetrahedrite, etc. Au:Ag ratios of the electrums show a highly limited range of nearly 1:1 in atomic %. The temperature, salinity and pressure of the Buckchang deposits estimated from fluid inclusion and sulfur isotope studies are as follows; stage I: $174{\sim}250^{\circ}C$, 0.35~4.01 NaCl eq. wt.%, 0.40~1.00 Kbar, stage II: $138{\sim}222^{\circ}C$, 1.9~8.4 NaCl eq. wt.%, 0.22~0.53 Kbar. The estimated oxygen and sulfur fugacity during stage I mineralization, based on phase relation of associated minerals, range from $10^{-39.7}{\sim}10^{-44.7}$ atm. and $10^{-13.4}{\sim}10^{-18.1}$ atm., respectively. All these evidences suggest that the Buckchang deposits are polymetallic epithermal ore deposits.

  • PDF