본고(本稿)에서는 현재의 경제상황을 잘 반영하는 건설투자활동(建設投資活動)의 단기예측모형(短期豫測模型)을 정립하고자 먼저 관련 시계열자료의 안정성(安定性) 여부(與否)와 순환성(循環性), 계절성(季節性)의 특성을 살펴본 후 여러 단기모형의 예측력(豫測力), 정합성(整合性), 설명력(說明力)을 비교 검토했다. 단위근(單位根) 검정(檢定)과 자기상관계수(自己相關係數) 스펙트랄 밀도함수 분석의 결과, 건설관련 시계열자료들이 대체로 단위근(單位根)을 갖지 않음으로써 안정적이고 주기적인 순환변동을 하고 있으며, 시차변수의 설명력이 높은 특성을 나타내었다. 또한 건설투자자료의 특성이 선행지표(先行指標)인 건축허가연면적(建築許可延面積) 및 건설수주액(建設受注額)과 아주 유사하여 건설투자 단기예측에 있어서 두 지표 사이의 시차관계(時差關係) 파악이 중요함을 알 수 있었다. 제(第)III장(章)에서는 단변량(單變量) 시계열모형(時系列模型)으로 ARIMA모형(模型)과 승법선형추세예측모형(乘法線型趨勢豫測模型)을, 다변량(多變量) 시계열모형(時系列模型)으로는 첫째, 선행지표(先行指標)를 이용한 1차자기회귀모형(次自己回歸模型), VAR모형(模型), 둘째 GNP자료를 이용한 거시경제모형의 단순한 축약형모형(縮約型模型)과 VAR모형(模型)을 제시하고 이들을 비교 평가하였다. 이에 따르면 단변량 시계열모형보다는 다변량 시계열모형이 시간이 경과할수록 예측오차(豫測誤差)가 커지지 않는다는 점에서 우수한 것으로 나타났으며, 다변량모형 중에서도 벡터자기회귀모형이 여타 모형보다 절대예측오차평균(絶對豫測誤差平均), 평균자승근(平均自乘根) 퍼센트 오차(誤差), 결정계수(決定係數) 등 모든 면에서 우수한 것으로 평가되었다. 이는 최근 건설투자가 추세에서 벗어난 급증세를 지속하고 있음을 고려할 때 타당한 결론이라 생각된다.
토양수분은 토양에 포함된 평균 수분량을 나타내며 수문 순환 관점에서 매우 중요한 수문변량 중 하나이다. 본 연구에서는 대표적인 기계학습 방법인 Support Vector Machine (SVM)을 이용한 토양 함수 예측 기법을 개발하고자 하며, 예측인자로서 원격 탐측 기반의 토양함수자료, 강수량, 온도 등을 활용하고자 한다. SVM은 Kernel 함수를 이용하여 복잡한 비선형 관계를 선형 가정을 통해서 해석하는 기계학습 방법으로서 전역모델(global model)로서 다양한 수문기상분야에 적용이 이루어지고 있다. SVM의 장점은 일정 부분의 오차를 허용함으로서 모형의 일반화 측면에서 기존 인공신경망(artificial neural network, ANN)에 비해 우수한 성능을 나타내며, 특히 예측모형으로서 적용성이 매우 크다. 본 연구에서는 과거 토양 함수 자료와 강수, 온도, 위성 관측 기반 정보 등을 이용하여 모형을 적합시키고 이를 미계측 유역으로 확장하는데 연구의 목적이 있으며, 본 연구를 통해 제안된 모형은 용담댐 시험유역을 대상으로 적용되며 기존 ANN 모형 및 다중회귀분석 결과와 비교를 통해 모형의 적합성을 평가하고자한다.
Journal of the Korean Data and Information Science Society
/
제26권4호
/
pp.957-970
/
2015
이 연구는 일반선형모형에 이원변량분석과 위계적회귀분석을 적용하여 한국남자프로농구 경기기록 (2014-2015 정규리그 270경기)을 분석하였다. 이원변량분석 결과, 3점슛시도에서 승패와 홈원정 집단간에 상호작용효과가 통계적으로 유의하게 나타났다. 이 외에 변인들 (2점슛시도, 어시스트, 속공, 선수교체)은 모두 승패 집단간에는 통계적으로 유의한 차이가 나타났고, 홈원정경기 간에는 유의한 차이가 없게 나타났다. 위계적회귀분석 결과, 어시스트는 3점슛시도가 총득점에 미치는 영향에 대해 통계적으로 유의한 조절변수로 나타났으며, 속공은 어시스트가 2점슛성공에 미치는 영향에 대해 유의한 조절변수로 나타났다. 반면 어시스트는 2점슛시도가 총득점에 미치는 영향에, 그리고 속공은 어시스트가 3점슛성공에 미치는 영향에 유의한 조절효과가 없는 것으로 나타났다. 마지막으로 선수교체는 2점슛시도, 3점슛시도 그리고 어시스트가 총득점에 미치는 영향에 통계적으로 유의한 조절효과가 없는 것으로 나타났다.
ENSO(El $Ni\check{n}o$ Southern Oscillation)은 태평양상의 해양과 대기간의 복잡한 상호작용의 일부이며, ENSO 순환(ENSO cycle)의 극한상태인 엘니뇨와 라니냐는 세계적으로 발생하는 홍수와 가뭄 등 자연재해와 많은 연관성을 가지고 있음이 많은 연구를 통하여 알려지고 있다. 우리나라에서도 ENSO와 수문변량들간의 관계를 분석하는 연구가 활발히 진행되고 있는데, 수문자료의 변동계수가 크기 때문에 이를 단순 표준화하여 해석하는데 있어 어려움이 있다. 본 연구에서는 자료의 표준정규분포화를 통하여 ENSO와 우리나라 수문변량들간의 관계를 분석하였다. ENSO를 정량적으로 표준지수화하기 위하여 적도부근 남태평양 Tahiti섬과 오스트레일리아 북부 Darwin 지역에서의 기압차를 월별로 표준화(standardization)한 SOI(Southern Oscillation Index)지수를 이용하였고, 수문자료를 정량적으로 표준지수화하기 위하여 우리나라 23개 기상관측소의 월강수량, 12개 기상관측소의 월평균기온, 월최저기온, 월최고기온 자료를 이용하여 표준정규분포를 가지는 표준정규지수로 환산하였다. 환산된 자료의 계절적 영향을 파악하고자 3개월 단위로 구분하여, 초과확률 등을 이용한 분석을 실시한 결과, 특정지역의 수문변동이 남방진동지수와 유의한 상관관계를 가짐을 확인할 수 있었다. 이러한 결과는 현재 많은 연구가 진행되고 있는 수문기상학적 예측모형의 개발에 유용한 정보를 제공해 줄 수 있을 것이다.
수자원의 지속적인 관리 및 효율적인 활용을 위하여 수문량의 예측과 분석은 필수적인 과정이라 할 수 있으며 이에 따라 다양한 수문 모형이 구축되고 강우, 유량 등 대표적인 수문량의 예측이 수행되어져 왔다. 그 중에서도 수문 시계열 모형은 시간의 흐름에 따라 일정하게 기록되어온 수문 자료를 확률적인 과정을 통하여 모형을 구축하고 이를 바탕으로 미래 수문량을 예측하는 데활용되는 모형으로, 과거에 기록된 수문 패턴이 미래에도 지속된다는 가정 하에 구축된다. 일반적으로 시계열 모형은 하나의 자료계열로 모형을 구축하는 단변량 모형과 원 자료계열 외에 다른 자료계열을 고려하여 모형을 구축하는 다변량 모형이 있으며, 다변량 모형은 원 자료계열에 영향을 미치는 외부변수를 고려함으로써 두 자료계열간의 상관성을 모형에 반영할 수 있는 장점을 가지고 있다. 또한 자료계열의 계절성을 고려하여 시계열 모형을 구축할 경우, 수문 시계열이 가지고 있는 계절적 영향을 잘 반영할 수 있다. 따라서 본 연구에서는 계절성을 고려한 다변량 시계열 모형인 SARIMAX(Seasonal AutoRegressive Integrated Moving Average with eXogenous) 모형을 이용하여 대표적인 수공구조물인 댐의 유입량 예측을 수행하였다. 일반적으로 댐 유입량 예측에는 댐의 유입량과 상관성이 높은 강우가 외부변수로 사용되어져 왔으나, 이 외에도 영향을 미칠 수 있는 지점특성치를 고려하여 모형을 구축한 후 비교하였다.
일반적으로 강우-유출모형은 lumped model과 distributed model로 크게 구분될 수 있으며, 우리나라에서는 이중 비교적 부족한 자료를 이용하여도 개략적 모의가 가능한 전자를 널리 사용하고 있다. 본 연구에서는 이러한 모형들의 매개변수를 보정하는 방법에 관해 연구하였다. 일반적으로 모형의 보정 방법에는 크게 시행오차에 의한 수동보정(manual calibration) 방법과 최적화 기법에 의한 자동보정(automatic calibration) 방법으로 나눌 수 있다. 수동보정 방법은 모형 수행결과를 수문곡선의 시각적 비교에 의해 관측치와 비교하여 모형 운영자의 주관적인 판단하에 조정하는 기법이며, 자동보정 방법은 최적화 기법을 이용8하여 특정한 산정기준(estimation criteria)을 최대 또는 최소화시켜 모형의 매개변수를 결정하는 방법이다. 이러한 최적화기법은 일반적으로 직접탐색법과 경사법으로 구분할 수 있다. 경사법은 수렴속도가 빠르지만 편미분에 의해 방향을 찾아가는 방법으로 편도함수가 필요하므로 수문모형에는 적용하기가 힘들므로 적합하지 않다. 그러나, 보다 많은 컴퓨터 수행시간을 필요로 하는 직접탐색법의 경우 수렴속도는 느리지만, 편도함수를 필요치 않으므로 수문모형의 최적화 기법으로 적합하다고 할 수 있다. 직접탐색법에는 simplex-search 법, 패턴인식(pattern-search)법, rotating-direction 법, brent 법 등이 있으며, 본 연구에서는 직접탐색법의 일종인 패턴인식(pattern -search)법을 이용하여 매개변수 최적화 과정을 모의하였다. 이러한 매개변수 보정모형을 구성한 후 이를 가장 보편적으로 사용되고 있는 유출모형인 각종 단위도법들을 결합하는 모형을 구성하였다. 또한 구성된 모형을 시범유역에 적용하여 나온 결과를 HEC-1에서 적용되고 있는 단일변량 증감법과 같은 최적화 기법을 이용한 결과와 비교·분석을 실시하였다. 본 모형을 활용하여 강우-유출 모형의 매개변수를 지속적으로 산정하고 일반화할 경우 임의의 유역의 수문기상학적 특성에 부합한 매개변수를 정량화 시킬 수 있었다.
경쟁위험사건들은 다기관 임상시험과 같은 군집화된 임상연구에서 자주 관측되어진다. 본 논문에서는 하나의 군집으로 부터 얻어지는 경쟁위험 생존자료에 대해 공통 프레일티를 허락하는 결합 프레일티모형 접근법을 제안한다. 추론을 위해 어려운 적분 자체를 피하는 다단계 가능도를 사용하여, 대응하는 추론절차를 유도한다. 또한 실제자료 분석을 통해 제안된 방법을 예증한다.
시간의 흐름에 따라 관측되는 경시적(longitudinal) 자료의 경우, 경시적 자료와 생존(survival) 자료가 종종 동시에 수집된다. 이 때 경시적 자료에서 발생하는 결측이 생존자료와의 연관성으로 인해 발생한 무시할 수 없는 결측(non-ignorable missing)이라면, 경시적 자료분석 방법만으로는 두 자료 간의 연관성을 고려하지 않아 독립변수에 대한 효과는 편향된 결과를 얻게 된다. 이러한 문제를 해결하기 위해서 결측의 원인이 생존시간과 연관되어 있으므로 생존모형을 고려하여 불편추정량을 얻기 위해 경시적 자료와 생존자료의 결합모형에 대한 연구가 이루어져 왔다. 본 논문은 경시적 자료의 형태가 영이 많이 존재하는 영과잉 가산자료(zero-inflated count data)와 생존자료의 결합모형을 연구하였다. 경시적 영과잉 가산자료와 생존자료는 각각 허들모형(hurdle model)과 비례위험모형(proportional hazards model)의 부 모형을 적용하였고, 두 부 모형들의 변량효과가 다변량 정규분포를 따른다는 가정을 통하여 결합하였다. 모수의 최우추정법으로 EM 알고리즘을 활용하였고, 추정된 표준오차를 계산하기 위해 프로파일 우도(profile likelihood)를 이용하였다. 최종적으로 모의실험을 통해 두 부 모형의 변량효과 간 상관관계가 존재하는 경우 결합모형이 개별적 모형보다 편의와 포함확률(coverage probability)의 측면에서 더 우수함을 보였다.
개념적 강우-유출모형에서 토양수분과 관련된 물리적 거동은 간략화 된 형태로 강우 및 온도자료를 활용하여 중간변량(state variable)으로 간접적으로 고려되고 있다. 특히 강우-유출모형에 초기함수 조건은 선행함수조건을 고려하여 수문지질학적 평가를 통하여 결정되어야 하나, 일반적으로 가정되거나 모형에서 간략화 된 분석과정을 통해 추정되고 있다. 본 연구에서는 토양의 Water Balance 모형 기반의 개념적 토양수분 추정모형을 활용하였다. 토양수분의 시간적 변동성을 평가하는데 있어서 연속적으로 측정된 In-situ 토양수분 자료를 이용하여 모형의 적합성을 평가하였다. Green-Ampt 방법과 중력식 침투방법과 온도를 활용한 증발산 추정기법을 연계한 토양함수 평가 모형을 개발하였다. In-situ 토양수분 자료와 유역의 강수량 및 온도자료를 이용한 관련 매개변수를 Bayesian 기법을 통해 추정하였으며 매개변수의 민감도를 평가하여 제시하였다. 최종적으로 제안된 모형의 활용측면에서 강우-유출모형의 초기함수 조건으로써의 역할을 평가하였다. 구체적으로 첨두유량 및 유출고와 초기함수조건과의 관계를 제시하고 강우-유출모형에서 활용방안을 제시하고자 한다.
세계적인 장기경기침체 속에서 보다 정확한 물동량 예측은 항만정책 수행에 중요하다. 따라서, 본 연구에서는 부산항 컨테이너 물동량(수출입화물과 환적화물)을 단변량 모형인 ARIMA 뿐만 아니라 인과관계가 있을 것으로 예상되는 경제규모(한국, 중국, 미국의 국내총생산), 금리수준 그리고 경기변동을 고려한 벡터자기회귀모형과 벡터오차수정모형을 활용하여 추정하고 비교하였다. 측정자료는 2014년 1월부터 2019년 8월까지 월별 부산항 컨테이너 물동량이다. 분석결과에 의하면, 수출입물동량 시계열은 비교적 안정적(stationary)이어서 VAR에 의해 추정하였고 환적화물은 불안정적(non-stationary)하지만, 경제규모, 금리 및 경기변동과 공적분(장기적인 균형관계)를 띠고 있어 VEC모형으로 추정하였다. 추정결과, 안정적인 수출입화물 추정에서는 단변량 모형인 ARIMA가 우수하고 추세가 있는 환적화물은 다변량모형인 VEC모형이 보다 예측력이 우수한 것으로 나타나고 있다. 특히 수출입화물은 우리나라 경제규모와 관련이 있고, 환적화물은 중국과 미국 경제규모와 밀접한 관련이 있다. 또한 중국 경제규모가 미국에 비하여 더 밀접하게 나타나고 있어 환적화물 증대전략에 시사점을 주고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.