• Title/Summary/Keyword: 변동 응력 진폭

Search Result 13, Processing Time 0.01 seconds

Residual Stress & Fatigue strenght in Welding Ship Structure (선박 용접구조의 잔류응력과 피로강도)

  • 김화수
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.12-20
    • /
    • 1997
  • 구조의 용접접합부에는 재료의 항복응력 크기의 용접잔류응력이 발생되고, 이 잔류응력 상태에서는 응력비(최소응력/최대응력)의 영향이 거의 없다는 것이 일정 진폭 하중조건의 피로실험결과로부터 알려져 있다. 이와 관련하여, 용접구조의 설계 단계에서는 초기 용접잔류응력이 그래도 잔류한 소형실험편의 일정진폭하중 상태의 피로실험 결과로부터 도출된 피로설계선도(S-N 선도)를 이용, 변동하중에 의한 응력 진폭의 밀도분포만으로 일생동안의 누적피해도를 구해 피로강도를 평가하는 것이 일 반적이다. 지금까지는 선박용접구조의 경우도 이러한 개념으로 피로강도 평가를 수행 하였으나, 일반적인 육상 또는 해상 용접구조물과는 달리, 화물의 적재 등의 정하중 이력에 의한 응력변동폭은 피로를 유발하는 파랑 응력변동폭보다 상당히 크다. 그리 고, 정하중에 의해 용접접합부에 인장응력을 발생시키는 하중이력을 받을 경우, 초기 용접잔류 응력은 상당히 저하될 것으로 생각된다. 본 연구에서는 인장응력을 유발하는 정하중 이력에 의해 저하된 용접잔류응력분포와 이러한 잔류응력분포를 가진 선측 종늑골 용접접합부의 피로강도를 검토한다.

  • PDF

Fatigue Crack Growth Behavior for Rail Steel under Mixed Mode Variable Amplitude Loading (혼합모드 변동하중하에서 레일강의 피로균열 진전거동)

  • Sohn, Kyoung-Ju;Seo, Young-Bum;Kim, Chul-Su;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.261-266
    • /
    • 2003
  • The growth behavior of the transverse crack, which was one of the most dangerous damages of rail defects, was investigated under mode I and mixed mode loading in rail steel. In the case of variable amplitude loading, the fatigue crack growth behavior was discussed using characteristic stress intensity factor ranges ${\Delta}_{rms}$. In addition, characteristic comparative stress intensity factor ranges ${\Delta}_{V,rms}$ was proposed to evaluate the quantitative effects of the variable amplitude under mixed mode loading. As a result, crack growth rate under variable amplitude loading was faster than that under constant amplitude loading.

  • PDF

Probabilistic Approach for Fatigue Life of Composite Materials with Impact-Induced Damage (충격손상 복합재료의 피로수명에 대한 통계적 해석 연구)

  • Kang, Ki-Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3148-3154
    • /
    • 2010
  • This paper presents the probabilistic analysis for fatigue life of Glass/Epoxy laminates with impact-induced damage. For this, a series of impact tests were perfomed on the Glass/Epoxy laminates using instrumented impact testing machine. Then, tensile and fatigue tests carried out so as to generate post-impact residual strength and fatigue life. Two Parameter Weibull distribution was used to fit the residual strength and fatigue life data of Glass/Epoxy composite laminates. The residual strength was affected by impact energy and their variance decreased with increasing of impact energy. The fatigue life of impacted laminates was greatly reduced by impact energy and this trend depended on applied stress amplitude. Additionally, the variation of fatigue life was gradually decreased with the applied stress amplitude.

과대, 과소응력하에서의 피로크랙발생 전파거동(I)

  • 송삼홍;원시태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.3
    • /
    • pp.301-308
    • /
    • 1985
  • 본 논문에서는 불규칙 하중을 받는 부재에 대한 연구의 고초로서 간단한 응력 모델을 설정하고 이들 변동응력이 가해지는 시기를 명확히 구분하여 크랙전파곡선의 거동을 고찰하였다. 특히 부하되는 응력 진폭의 크기에 따라서 크랙선단부의 미시적 인 변화의 크기가 다르고 이로인하여 크랙전파에 대한 피해의 정도가 달라진다고 하면 크랙전파의 지연 및 가속현상이 나타날 것이 예측이 되고 따라서 이때 나타나는 피해 정도의 크기를 미소 경도치로 환산하여 그것과 피로크랙 전파 특성과를 비교 검토 하 였다.

The Fatigue Evaluation of Structural Steel Members under Variable-Amplitude Loading (변동하중을 받는 강구조부재의 피로거동 해석)

  • Chang, Dong Il;Kwak, Jong Hyun;Bak, Yong Gol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.167-175
    • /
    • 1988
  • The principle objective of this study is to evaluate the fatigue behavior of structural steel components of highway bridges subjected to service stresses. The main aspects of this investigation are; 1) a measurement and statistical analysis of service stress cycles observed in highway bridge. 2) fatigue tests under equivalent constant-amplitude(CA) loading and simulated variable-amplitude(VA) loading 3) a evaluation of the fatigue behavior under VA-loading by eqivalent root mean cube (RMC) stress range. Theoretically, the RMC model is adequate in evaluation of fatigue behavior under VA-loading, because the regression coefficient (m) of crack growth rate is 3 approximately. The result of fatigue test shows that the RMC model is fitter than the current RMS model in fatigue evaluation under VA-loading. The interaction effects and sequence effects under VA-loading affect little fatigue life of structural components. As the transition rate of stress ranges is higher, the crack growth rate is higher.

  • PDF

Roles of Wind Stress Variations in the Western North Pacific on the Decadal Change of ENSO (ENSO 십년 변동에 미치는 북서태평양 지역에서의 바람 응력 변동의 역할)

  • Lee, Yoon-Kyoung;Moon, Byung-Kwon;Kwon, Min-Ho;Jhun, Jong-Ghap
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.687-694
    • /
    • 2006
  • This paper investigated the effects of wind stress forcing in the western North Pacific on ENSO decadal change before and after the late 1970s. The SVD analysis of SODA data shows that a positive wind stress curl is dominant in the western North Pacific at the ENSO mature phase, which leads to the ENSO phase change by discharge/recharge heat contents in the equatorial Pacific. Before the late 1970s, the wind stress curl in the western North Pacific was strong. This strong wind forcing that is associated with the fast discharge of heat contents in the equator led to the short period and the weak intensity of ENSO occurred during the 1960-1970. On the other hand, after the late 1970s the relatively weak wind stress curl was accompanied with the long period and the strong intensity of ENSO. The simple coupled model experiments also confirm that the amplitude and dominant period of ENSO decrease when the wind stress curl in the western North Pacific projects more strongly into the ocean at the TNSO mature phase. Our results support that the changes in the behavior of ENSO after the late 1970s are associated with the wind stress variation in the western North Pacific.

A Study on the Liquefaction of Saturated Sand Layer under Oscillating Water Pressure (수압변동에 의한 포화 모래층의 액상화 연구)

  • Howoong Shon;Hyun-Chul Lim;Dae-Geun Lee
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.59-65
    • /
    • 2000
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure is studied theoretically and experimentally. By the experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress becomes zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical treatment as for the ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquified layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the water and the air in the layer increases the liquified depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquified depth decrease rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquified depth decrease with the increase of the coefficient.

  • PDF

LIQUEFACTION OF SAND SEABED INDUCED BY WATER PRESSURE WAVE (수압변동에 의한 해저사질층의 액상화 현상연구)

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.3
    • /
    • pp.197-203
    • /
    • 2001
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure (water wave) us studied theoretically and experimentally. By the experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress become zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical tearment as for ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquified layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the air in the layer increases the liquified depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquefied depth decrese rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquified depth decrease with the increase of the coefficient.

  • PDF

Liquefaction of Sand Seabed Induced by Water Pressure Wave (변동수압에 의한 사질 해저층의 액상화 연구)

  • Shon, Ho-Woong
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.125-135
    • /
    • 2002
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure (water wave) is studied theoretically and experimentally. By experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress becomes zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical treatment as for the ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquefied layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the water and the air in the layer increases the liquefied depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquefied depth decrease rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquefied depth decrease with the increase of the coefficient.

  • PDF

Probabilistic Fatigue Life Evaluation of Steel Railway Bridges according to Live-Dead Loads Ratio (강철도교의 활하중-사하중 비에 따른 확률기반 피로수명 평가)

  • Lee, Sangmok;Lee, Young-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.339-346
    • /
    • 2019
  • Various studies have been conducted to evaluate the probabilistic fatigue life of steel railway bridges, but many of them are based on a relatively simple model of crack propagation. The model assumes zero minimum stress and constant loading amplitude, which is not appropriate for the fatigue life evaluation of railway bridges. Thus, this study proposes a new probabilistic method employing an advanced crack propagation model that considers the live-dead load ratio for the fatigue life evaluation of steel railway bridges. In addition, by using the rainflow cycle counting algorithm, it can handle variable-amplitude loading, which is the most common loading pattern for railway bridges. To demonstrate the proposed method, it was applied to a numerical example of a steel railway bridge, and the fatigue lives of the major components and structural system were estimated. Furthermore, the effects of various ratios of live-dead loads on bridge fatigue life were examined through a parametric study. As a result, with the increasing live-dead stress ratio from 0 to 5/6, the fatigue lives can be reduced by approximately 30 years at both the component and system levels.