• Title/Summary/Keyword: 변동성 분석

Search Result 3,176, Processing Time 0.029 seconds

A Study of Equipment Accuracy and Test Precision in Dual Energy X-ray Absorptiometry (골밀도검사의 올바른 질 관리에 따른 임상적용과 해석 -이중 에너지 방사선 흡수법을 중심으로-)

  • Dong, Kyung-Rae;Kim, Ho-Sung;Jung, Woon-Kwan
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose : Because there is a difference depending on the environment as for an inspection equipment the important part of bone density scan and the precision/accuracy of a tester, the management of quality must be made systematically. The equipment failure caused by overload effect due to the aged equipment and the increase of a patient was made frequently. Thus, the replacement of equipment and additional purchases of new bonedensity equipment caused a compatibility problem in tracking patients. This study wants to know whether the clinical changes of patient's bonedensity can be accurately and precisely reflected when used it compatiblly like the existing equipment after equipment replacement and expansion. Materials and methods : Two equipments of GE Lunar Prodigy Advance(P1 and P2) and the Phantom HOLOGIC Spine Road(HSP) were used to measure equipment precision. Each device scans 20 times so that precision data was acquired from the phantom(Group 1). The precision of a tester was measured by shooting twice the same patient, every 15 members from each of the target equipment in 120 women(average age 48.78, 20-60 years old)(Group 2). In addition, the measurement of the precision of a tester and the cross-calibration data were made by scanning 20 times in each of the equipment using HSP, based on the data obtained from the management of quality using phantom(ASP) every morning (Group 3). The same patient was shot only once in one equipment alternately to make the measurement of the precision of a tester and the cross-calibration data in 120 women(average age 48.78, 20-60 years old)(Group 4). Results : It is steady equipment according to daily Q.C Data with $0.996\;g/cm^2$, change value(%CV) 0.08. The mean${\pm}$SD and a %CV price are ALP in Group 1(P1 : $1.064{\pm}0.002\;g/cm^2$, $%CV=0.190\;g/cm^2$, P2 : $1.061{\pm}0.003\;g/cm^2$, %CV=0.192). The mean${\pm}$SD and a %CV price are P1 : $1.187{\pm}0.002\;g/cm^2$, $%CV=0.164\;g/cm^2$, P2 : $1.198{\pm}0.002\;g/cm^2$, %CV=0.163 in Group 2. The average error${\pm}$2SD and %CV are P1 - (spine: $0.001{\pm}0.03\;g/cm^2$, %CV=0.94, Femur: $0.001{\pm}0.019\;g/cm^2$, %CV=0.96), P2 - (spine: $0.002{\pm}0.018\;g/cm^2$, %CV=0.55, Femur: $0.001{\pm}0.013\;g/cm^2$, %CV=0.48) in Group 3. The average error${\pm}2SD$, %CV, and r value was spine : $0.006{\pm}0.024\;g/cm^2$, %CV=0.86, r=0.995, Femur: $0{\pm}0.014\;g/cm^2$, %CV=0.54, r=0.998 in Group 4. Conclusion: Both LUNAR ASP CV% and HOLOGIC Spine Phantom are included in the normal range of error of ${\pm}2%$ defined in ISCD. BMD measurement keeps a relatively constant value, so showing excellent repeatability. The Phantom has homogeneous characteristics, but it has limitations to reflect the clinical part including variations in patient's body weight or body fat. As a result, it is believed that quality control using Phantom will be useful to check mis-calibration of the equipment used. A value measured a patient two times with one equipment, and that of double-crossed two equipment are all included within 2SD Value in the Bland - Altman Graph compared results of Group 3 with Group 4. The r value of 0.99 or higher in Linear regression analysis(Regression Analysis) indicated high precision and correlation. Therefore, it revealed that two compatible equipment did not affect in tracking the patients. Regular testing equipment and capabilities of a tester, then appropriate calibration will have to be achieved in order to calculate confidential BMD.

  • PDF

Rationalization of Fertilizing and Development of Fetilizer (시비(施肥)의 합리화(合理化)와 비종개발(肥種開發))

  • Lim, Sun-Uk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.1
    • /
    • pp.49-50
    • /
    • 1982
  • The objective of this paper is to review the changes in fertilizer use pattern and to discuss some aspects of the fertilizer development in Korea. Fertilizer consumption in Korea have steadily increased to triple the application rates of N, P and K during the 15 years from 1965 to 1980, and Korea became one of the countries which apply fertilizers at the highest rate. The ratio of N: $P_2O_5$: $K_2O$ in fertilizer consumption changed from 55.4 : 31.4 : 13.1 in 1965 to 54.0 : 23.8 : 22.2 in 1980. It can be said that Korean farmers practise a balanced fertilization at least in view of fertilizer consumption as compared to other developing countries. However, differences in soil properties, crops, and climate varying as region were not reflected on fertilization. In the technological development of fertilizer, the chemical form and composition of the fertilizer as well as the suitability to the specific crops must be taken into consideration for the efficient use of fertilizers. Although organic fertilizers and manure are accepted as minor element suppliers, it is necessary to add minor elements into chemical fertilizers on the industrial process. Industrial waste may be used for the agricultural production as a measure of pollution control providing careful study on the waste.

  • PDF

An Analytical Study on the Stem-Growth by the Principal Component and Canonical Correlation Analyses (주성분(主成分) 및 정준상관분석(正準相關分析)에 의(依)한 수간성장(樹幹成長) 해석(解析)에 관(關)하여)

  • Lee, Kwang Nam
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.7-16
    • /
    • 1985
  • To grasp canonical correlations, their related backgrounds in various growth factors of stem, the characteristics of stem by synthetical dispersion analysis, principal component analysis and canonical correlation analysis as optimum method were applied to Larix leptolepis. The results are as follows; 1) There were high or low correlation among all factors (height ($x_1$), clear height ($x_2$), form height ($x_3$), breast height diameter (D. B. H.: $x_4$), mid diameter ($x_5$), crown diameter ($x_6$) and stem volume ($x_7$)) except normal form factor ($x_8$). Especially stem volume showed high correlation with the D.B.H., height, mid diameter (cf. table 1). 3) (1) Canonical correlation coefficients and canonical variate between stem volume and composite variate of various height growth factors ($x_1$, $x_2$ and $x_3$) are ${\gamma}_{u1,v1}=0.82980^{**}$, $\{u_1=1.00000x_7\\v_1=1.08323x_1-0.04299x_2-0.07080x_3$. (2) Those of stem volume and composite variate of various diameter growth factors ($x_4$, $x_5$ and $x_6$) are ${\gamma}_{u1,v1}=0.98198^{**}$, $\{{u_1=1.00000x_7\\v_1=0.86433x_4+0.11996x_5+0.02917x_6$. (3) And canonical correlation between stem volume and composite variate of six factors including various heights and diameters are ${\gamma}_{u1,v1}=0.98700^{**}$, $\{^u_1=1.00000x_7\\v1=0.12948x_1+0.00291x_2+0.03076x_3+0.76707x_4+0.09107x_5+0.02576x_6$. All the cases showed the high canonical correlation. Height in the case of (1), D.B.H. in that of (2), and the D.B.H, and height in that of (3) respectively make an absolute contribution to the canonical correlation. Synthetical characteristics of each qualitative growth are largely affected by each factor. Especially in the case of (3) the influence by the D.B.H. is the most significant in the above six factors (cf. table 2). 3) Canonical correlation coefficient and canonical variate between composite variate of various height growth factors and that of the various diameter factors are ${\gamma}_{u1,v1}=0.78556^{**}$, $\{u_1=1.20569x_1-0.04444x_2-0.21696x_3\\v_1=1.09571x_4-0.14076x_5+0.05285x_6$. As shown in the above facts, only height and D.B.H. affected considerably to the canonical correlation. Thus, it was revealed that the synthetical characteristics of height growth was determined by height and those of the growth in thickness by D.B.H., respectively (cf. table 2). 4) Synthetical characteristics (1st-3rd principal component) derived from eight growth factors of stem, on the basis of 85% accumulated proportion aimed, are as follows; Ist principal component ($z_1$): $Z_1=0.40192x_1+0.23693x_2+0.37047x_3+0.41745x_4+0.41629x_5+0.33454x_60.42798x_7+0.04923x_8$, 2nd principal component ($z_2$): $z_2=-0.09306x_1-0.34707x_2+0.08372x_3-0.03239x_4+0.11152x_5+0.00012x_6+0.02407x_7+0.92185x_8$, 3rd principal component ($z_3$): $Z_3=0.19832x_1+0.68210x_2+0.35824x_3-0.22522x_4-0.20876x_5-0.42373x_6-0.15055x_7+0.26562x_8$. The first principal component ($z_1$) as a "size factor" showed the high information absorption power with 63.26% (proportion), and its principal component score is determined by stem volume, D.B.H., mid diameter and height, which have considerably high factor loading. The second principal component ($z_2$) is the "shape factor" which indicates cubic similarity of the stem and its score is formed under the absolute influence of normal form factor. The third principal component ($z_3$) is the "shape factor" which shows the degree of thickness and length of stem. These three principal components have the satisfactory information absorption power with 88.36% of the accumulated percentage. variance (cf. table 3). 5) Thus the principal component and canonical correlation analyses could be applied to the field of forest measurement, judgement of site qualities, management diagnoses for the forest management and the forest products industries, and the other fields which require the assessment of synthetical characteristics.

  • PDF

Studies on Classification and Genetic Nature of Korean Local Corn Lines (한국(韓國) 재래종(在來種) 옥수수의 계통분류(系統分類) 및 유전적(遺傳的) 특성(特性)에 관(關)한 연구(硏究))

  • Lee, In Sup;Choi, Bong Ho
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.396-450
    • /
    • 1982
  • To obtain basic information on the Korean local corn lines a total of 57 lines were selected from 1,000 Korean local collection at Chungnam National University, classified by principal component analysis, and genetic nature was investigated. The results are summarized as follows. 1. There were a great variation in mean values of plant characters of the lines. The mean values of plant characters except for density of kernels varied with types of crossing. All characters except. for tasselling dates were reduced in magnitude when selfed, while those characters were increased when topcrossed. 2. The correlation coefficients among characters studied ranged front 0.99 to -0.59. The correlation coefficients among characters were not greatly changed depending upon types of crosses. 3. In order to classify the lines more effectively, selected 12 plant characters were used to classify 57 local lines by principal component analysis. The first four component could explain 86.4%, 83.4% and 81.1% of the total variations in sibbed lines, selfed lines and topcrossed lines, respectively. 4. Contribution of characters to principal component was high at upper principal components and low at lower principal components. 5. Biological meaning of the principal component and plant types corresponding to the each principal component were explained clearly by the correlation coefficient between principal components and characters. The first principal component appeared to correspond to the size of plant and ear. The second principal component appeared to correspond to the degree of differentiation in organs and the duration of vegetative growing period. But biological meaning of the third and fourth principal components was not clear. 6. The lines were classified into 4 lineal groups by the taxonomic distance. Group I included 52 lines which was 91.2% of total lines, group II 3 lines, group III 1 lines and group IV I lines, respectively. Four groups could be characterized as follows : Group I : early maturity, short-culmed, medium height plant, small ears, medium kernels and medium yielding. Group II : late maturity, medium height plant, small ears, small kernels, prolific ears and higher yielding. Group III : medium maturity, tall-culmed, small ears, small kernels and low yielding. Group IV : medium maturity, tall-calmed, large ears, one ear plant and me yielding. 7. The inbreeding depression varied with plant characters and lines. The characters such as yield, kernel weight per ear, ear weight and plant height showed great degree of inbreeding depression. Group I showed high inbreeding depression in such characters as 100 kernel weight, leaf number, plant height and days to tasselling, while group II showed high inbreeding depression in other plant characters. 8. Heterosis of plant characters varied also with lines. The ear weight, kernel weight per ear, yield, 100 kernel weight, and plant height were some of the plant characters showing high heterosis. Group II showed high values of heterosis in such characters as ear length, ear diameter, ear weight, kernel weight per ear, 100 kernel weight, and leaf length, while group I was high in heterosis in other plant characters. 9. The degree of homozgosity was highest in ear weight (79.1%) and lowest in ear number per plant (-21%). Group II showed higher degree of homozygosity than group I. 10. Correlation coefficients between characters of ribbed and topcrossed lines were positive for all characters. Highly significant. correlation coefficients between ribbed and topcrossed lines were obtained especially for characters such as ear number per plant, plant height, leaf length and yield per plot.

  • PDF

A Study on Rationalization of National Forest Management in Korea (국유림경영(國有林經營)의 합리화(合理化)에 관(關)한 연구(硏究))

  • Choi, Kyu-Ryun
    • Journal of Korean Society of Forest Science
    • /
    • v.20 no.1
    • /
    • pp.1-44
    • /
    • 1973
  • Needless to say, the management of national forest in all countries is very important in view of the national mission and management purposes. Korean national forest is also in particular significant in promoting national economy for the continuous increasing of the demand for wood, conservation of the land and social welfare. But there's no denying the fact that the leading aim of the Korean forest policy has been based upon the conservation of forest resources and recovery of land conservation function instead of improvement of the forest productive capacity. Therefore, the management of national forest should be aimed as an industry in the chain of the Korean national economy. And the increment of the forest productive capacity based on rationalized forest management is also urgently needed. Not only the increment of the timber production but also the establishment of the good forest in quality and quantity are to bring naturally many functions of conservation and other public benefits. In 1908 Korean national forest was historically established for the first time as a result of the notification for ownership, and was divided into two kinds in 1911-1924, such as indisposable national forest for land conservation, forest management, scientific research and public welfare, and the other national forest to be disposed. Indisposable forest is mostly under the jurisdiction of national forest stations (Chungbu, Tongbu, Nambu), and the tother national forests are under custody of respective cities and provinces, and under custody of the other government authorities. As of the end of 1971, national forest land is 19.5% (1,297,708 ha) of the total forest land area, but growing stock is 50.1% ($35,406,079m^3$) of the total forest growing stock, and timber production of national forest is 23.6% ($205,959m^3$) of the year production of total timber in Korea. Accordingly, it is the important fact that national forest occupies the major part of Korean forestry. The author positively affirms that success or failure of the management of national forest controls rise or fall of forestry in Korea. All functions of forest are very important, but among others the function of timber production is most important especially in Korea, that unavoidably imports a large quantity of foreign wood every year (in 1971 import of foreign wood-$3,756,000m^3$, 160,995,000 dollars). So, Korea urgently needs the improvement of forest productive capacity in national forest. But it is difficult that wood production meets the rapid increase of demand for wood to the development of economy, because production term of forestry is long, so national forest management should be rationalized by the effective investment and development of forestry techniques in the long view. Although Korean national forest business has many difficulties in the budget, techniques and the lack of labour due to outflow of rural village labour by development of national economy, and the increase of labour wages and administrative expenses etc. the development of national forest depends on adoption of the suitable forest techniques and management adapted for social and economical development. In this view point the writer has investigated and analyzed the status of the management of national forest in Korea to examine the irrational problems and suggest an improvement plan. The national forestry statistics cited in this study is based on the basic statistics and the statistics of the forest business as of the end of 1971 published by Office of Forestry, Republic of Korea, and the other depended on the data presented by the national forest stations. The writer wants to propose as follows (seemed to be helpful in improvement of Korean national forest management). 1) In the organization of national forest management, more national forest stations should be established to manage intensively, and the staff of working plan officials should be strengthened because of the importance of working plan. 2) By increasing the staff of protection officials, forest area assigned for each protection official should be decreased to 1,000-2,000 ha. 3) The frequent personnel changes of supervisor of national forest station(the responsible person on-the-spot) obstructs to accomplish the consistent management plan. 4) In the working plan drafting for national forest, basic investigations should be carefully practiced with sufficient expenditure and staff not to draft unreal working plan. 5) The area of working-unit should be decreased to less than 2,000 ha on the average for intensive management and the principle of a working-unit in a forest station should be realized as soon as possible. 6) Reforestation on open land should be completed in a short time with a debt of the special fund(a long term loan), and the land on which growing hardwood stands should be changed with conifers to increase productivity per unit area, and at the same time techical utilization method of hardwood should be developed. 7) Expenses of reforestation should be saved by mechanization and use of chemicals for reforestation and tree nursery operation providing against the lack of labour in future. 8) In forest protection, forest fire damage is enormous in comparison with foreign countries, accordingly prevention system and equipment should be improved, and also the minimum necessary budget should be counted up for establishment and manintenance of fire-lines. 9) Manufacture production should be enlarged to systematize protection, processing and circulation of forest business, and, by doing this, mich benefit is naturally given for rural people. 10) Establishment and arrangement of forest road networks and erosion control work are indispensable for the future development of national forest itself and local development. Therefore, these works should be promoted by the responsibility of general accounting instead of special accounting. 11) Mechanization of forest works should be realized for exploiting hinterlands to meet the demand for timber increased and for solving lack of labour, consequently it should promote import of forest machines, home production, training for operaters and careful adminitration. 12) Situation of labour in future will grow worse. Therefore, the countermeasure to maintain forest labourers and pay attention to public welfare facilities and works should be considered. 13) Although the condition of income and expenditure grows worse because of economical change, the regular expenditure should be fixed. So part of the surplus fund, as of the end of 1971, should be established for the fund, and used for enlarging reforestation and forest road networks(preceding investment in national forest).

  • PDF

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF