• Title/Summary/Keyword: 벽면온도

Search Result 268, Processing Time 0.027 seconds

Measurement of Adiabatic Wall Temperature in Compressible High Speed Impinging jets using Infra-red Camera (적외선 카메라를 이용한 압축성 고속 충돌 제트에서의 단열 벽면 온도 특성 연구)

  • Kim, Beom-Seok;Shin, Sang-Woo;Yu, Man-Sun;Cho, Hyung-Hee;Lee, Jang-Woo;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.714-719
    • /
    • 2007
  • In this paper, we report experimental investigations on measurement of adiabatic wall temperature on a flat 2-D plate of high-speed impinging jet made by circular-shape nozzle at steady state condition using infra-red camera. Experiments have been conducted for the Reynolds number of 187,000 according to the change of nozzle-to-plate distance. Dimensionless number, recovery factor, has been used to represent the measured adiabatic wall temperature. And we compared the result obtained by using infra-red camera with that obtained by using thermocouple.

Analysis on the Modification of Near-wall Turbulent Characteristics of Temperature Field in a Channel imposed with Linearly Increasing Wall Disturbance (선형적으로 증가하는 벽면교란이 벽 근처 난류 온도장의 특성 변화에 미치는 영향 해석)

  • Park, Soo Hyung;Byun, Yung-Hwan;Na, Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.101-112
    • /
    • 2013
  • Large eddy simulation was performed to investigate the effect of linearly increasing wall disturbance on the modification of turbulent characteristics of temperature field in the vicinity of the wall. It was noted that temperature variance increased monotonically whereas temperature dissipation decreased significantly, resulting in a noticeable reduction in both time and length-scales. A sudden drop in turbulent Prandtl number down to around 0.25 in the near-wall region indicated that the similarity between velocity and temperature fields decreases near the wall as a result of linear wall disturbance.

Investigation of the Relationship Between Wall Thermal Conductivity and Inner Room Temperature in Compartment Fires (구획화재에서 벽면의 열전도 계수와 내부 온도의 상관관계 분석)

  • You, Woo Jun;Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.17-23
    • /
    • 2018
  • In this study, the relations of the wall thermal conductivity and surface temperature in a compartment fire are investigated using Buckingham Pi theorem. The dimensionless parameters of the previous study are analyzed in order to correlate the dimensionless groups of the heat release rate, the thermal conductivity, the volume of compartment and the convective heat transfer coefficient. In addition the reduced scale of compartment, which has 1/6 size of ISO 9705 Room Corner Tester, is manufactured and the oxygen concentration and the maximum temperature in the space are measured for the gasoline pool fire ($10cm{\times}10cm$, $15cm{\times}15cm$ and $20cm{\times}20cm$). Finally, the criterion of the wall temperature increase are suggested in accordance with the thermal conductivity and the convective heat transfer coefficient. In addition, the dimensionless empirical equation using Buckingham Pi theorem considering the heat release rate are presented suggested. The results of this study will be useful especially for the fire phenomenon investigation of the wall thermal conductivity coefficient and shape in the compartment space.

A Numerical Simulation of Regenerative Cooling Heat Transfer for the Rocket Engine (로켓엔진의 재생 냉각 열전달 해석)

  • 전종국;박승오
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • This paper presents the numerical thermal analysis for regeneratively cooled rocket thrust chambers. An integrated numerical model incorporates computational fluid dynamics for the hot-gas thermal environment, and thermal analysis for the liner and coolant channels. The flow and temperature fields in rocket thrust chambers is assumed to be axisymmetric steady state which is presumed to the combustion liner. The heat flux computed from nozzle flow is used to predict the temperature distribution of the combustion liner As a result, we present the wall temperature of combustion liner and the temperature change of coolant.

Transition of Natural Convective Flows Subjected to Small-Wave-Number Sinusoidal Wall Temperatures with Phase Difference (위상 차이가 있는 작은 파동수의 정현적인 벽면 온도 하에서의 자연 대류 유동의 천이)

  • Yoo, Joo-Sik
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.300-311
    • /
    • 2008
  • This study investigates the natural convection of air(Pr=0.7) between two walls having a small- wave- number sinusoidal temperature distributions with a phase difference. The wave number and the phase difference of wall temperatures are k=0.5 and ㄱ/2, respectively. In the conduction-dominated regime at small Rayleigh number, two slightly inclined cells are formed over one wave length. At higher Rayleigh number, however, multicellular convection occurs in thermally unstable region. A spatial symmetry is intermittently broken in the transient period at the Rayleigh number near the critical value. The steady-state flows always satisfy the spatial symmetry. A steep increase of Nusselt number occurs near the Rayleigh number at which transition of flow pattern occurs.

Experimental Study on the Heat Transfer and Turbulent Flow Characteristics of Jet Impinging the Non-isothermal Heating Plate (비균일 온도분포를 갖는 평판에 대한 충돌제트의 열전달 및 난류유동특성에 관한 연구)

  • 한충호;이계복;이충구;이창우
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.272-277
    • /
    • 2001
  • An experimental study of jet impinging the non-isothermal heating surface with linear temperature gradient is conducted with the presentation of the turbulent flow characteristics and the heat transfer rate, represented by the Nusselt number. The jet Reynolds number ranges from 15,000 to 30,000, the temperature gradient of the plate is 2~4.2$^{\circ}C$/cm and the dimensionless nozzle to plate distance (H/D) is from 2 to 10. The results show that the peak of heat transfer rate occurs at the stagnation point, and the heat transfer rate decreases as the radial distance from the stagnation point increases. A remarkable feature of the heat transfer rate is the existence of the second peak. This is due to the turbulent development of the wall jet. Maximum heat transfer rate occurs when the axial distance from the nozzle to nozzle diameter (H/D) is 6 or 8. The heat transfer rate can be correlated as a power function of Prandtl number, Reynolds number, the dimensionless nozzle to plate distance (H/D) and temperature gradient (dT/dr). It has been found that the heat transfer rate increases with increasing turbulent intensity. The wall jet is influenced by temperature gradient and the effect becomes more important at higher radii.

  • PDF

과냉각수에 분사된 증기제트의 응축특성에 관한 실험

  • Cho, Seok;Kim, Hwan-Yeol;Song, Cheol-Hwa;Bae, Yun-Young;Jeong, Mun-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.571-576
    • /
    • 1998
  • 고온의 증기가 과냉각 상태의 물과 직접접촉에 의해 발생하는 응축현상(DCC Direct Contact Condensation)을 실험적으로 고찰하였다. 본 연구는 두단계로 나누어 수행하였다. 1단계 연구에서는 간단한 원형관 형태의 수평 노즐을 통하여 증기제트가 대기압 상태의 과냉각수로 분출될 때 증기제트 및 주위의 거동을 측정·분석하였다. 수조의 온도와 증기유량의 변화에 따른 증기제트의 축방향과 반경방향 온도분포와 수조 벽면에서의 동압을 측정하였으며, 고속 비디오 카메라를 사용하여 각각의 경우에 대하여 증기제트의 분출이미지를 촬영하였다. 벽면에서의 동압은 노즐의 분출구직경과 응축수의 온도에 비례하여 증가하였다. 2단계 연구에서는 몇가지 형태의 증기분사기 축소 모형에 대한 응축성능을 비교하였다. 이때에는 수조의 온도상승으로 인해 수조가 가압되는 정도를 알아보기 위해 수조를 밀봉한 상태로 실험을 수행하였다. 실험시 수조의 압력은 시간의 경과에 따라 계속적으로 증가하였으나, 이는 방출된 증기의 불완전한 응축에 의한 것은 아니고 증기의 분출과 응축으로 인한 응축수의 부피팽창과 수조 온도의 상승으로 인한 증기압의 상승 때문인 것으로 판단된다.

  • PDF

Numerical Study on the Leakage Safety of the Membrane LNG Tank Wall (멤브레인식 LNG 탱크벽체의 누설안전에 관한 수치해석적 연구)

  • Kim, Chung-Kyun;Shim, Jong-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.14-20
    • /
    • 2008
  • In this numerical study, the leakage safety of the LNG tank in which is constructed by membrane inner tank-plywood-polyurethane form-plywood-prestressed concrete structures has been presented for four leakage analysis models. The LNG leak criterion of the tank wall with a storage capacity of $200,000\;m^3$ is analyzed based on the thermal resistance technique. This means that if the cryogenic temperature of a leaked LNG is detected at the outer side of the PC wall, it may be leaked through the wall thickness of the tank. The calculated results based on the thermal resistance method between two walls show that the plywood, PUF, and another plywood walls may block the leakage of the leaked LNG even though the strength of these walls is already collapsed by a leaked LNG pressure. But, the leaked LNG may pass the thickness of the prestressed concrete wall for a period of elapsed time even though the PC outer tank supports the leaked LNG pressure. Thus, the PC outer tank may extend the leakage time of a leaked LNG.

  • PDF

A Numerical Study on the Combustion Characteristics in a Liquid Rocket Engine with Film Cooling Effect (막냉각 효과를 고려한 액체로켓 엔진의 연소 특성에 관한 연구)

  • Byeon,Do-Yeong;Kim,Man-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.69-76
    • /
    • 2003
  • For stable combustion and safety of a structure of the propulsion system, a cooling system to the liquid rocket engine should be incorporated. In this study, Eulerian-Lagrangian scheme for two phase combustion, nongray radiation and soot formation effect, and film-wall interaction have been introduced to study the effect of film cooling. After briefly introducing the governing equation, combustion characteristics with change of wall temperature has been investigated by varying such parameters as fuel mass fraction for film cooling, diameter of the fuel droplet, overall mixture fraction of oxygen to fuel. Also, radiative heat flux is compared with the conductive one at the combustor wall.