• Title/Summary/Keyword: 벨형 노즐

Search Result 2, Processing Time 0.015 seconds

The Design of The Bell-Shaped Nozzle for The Maximum Thrust (추력 극대화를 위한 벨형 노즐 설계)

  • Kim Min-Chul;Park Soon-Ho;Lee Gui-Hwan;Lee Choong-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.487-490
    • /
    • 2005
  • The thrust Control in Solid Propellant Rocket is incomparably limited than that in Liquid Propellant Rocket. Because it is fixed that section to relate a combustion, that is a natural result. The control of a thrust directions in a Solid Propellant Rocket is not efficient for the purpose of a Solid Propellant Rocket. But it is a problem to solve that a weight on board should increase through the maximization of the thrust in a Solid Propellant Rocket.

  • PDF

A Preliminary Configuration Design of Methane/Oxygen Bipropellant Small-Rocket-Engine through Theoretical Performance Analysis (이론성능해석에 의한 메탄/산소 이원추진제 소형로켓엔진의 예비형상설계)

  • Bae, Seong Hun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • Design parameters required for Methane/oxygen bipropellant small-rocket-engine were derived through a theoretical performance analysis. The theoretical performance of the rocket engine was analyzed by using CEA and optimal propellant mixture ratio, characteristic length, and optimal expansion ratio were calculated by assuming chemical equilibrium. A coaxial-type swirl injector was chosen because of its outstanding atomization performance and high combustion efficiency compared to other types of injector and also a bell nozzle with 80% of its full length was designed. The rocket engine configuration with 1.72 MPa of chamber pressure, 0.18 kg/s in total propellant mass flow, and O/F ratio of 2.7 was proposed as a ground-firing test model.