• Title/Summary/Keyword: 벡터 유사도 정합

Search Result 48, Processing Time 0.024 seconds

Camera Extrinsic Parameter Estimation using 2D Homography and LM Method based on PPIV Recognition (PPIV 인식기반 2D 호모그래피와 LM방법을 이용한 카메라 외부인수 산출)

  • Cha Jeong-Hee;Jeon Young-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.2 s.308
    • /
    • pp.11-19
    • /
    • 2006
  • In this paper, we propose a method to estimate camera extrinsic parameter based on projective and permutation invariance point features. Because feature informations in previous research is variant to c.:men viewpoint, extraction of correspondent point is difficult. Therefore, in this paper, we propose the extracting method of invariant point features, and new matching method using similarity evaluation function and Graham search method for reducing time complexity and finding correspondent points accurately. In the calculation of camera extrinsic parameter stage, we also propose two-stage motion parameter estimation method for enhancing convergent degree of LM algorithm. In the experiment, we compare and analyse the proposed method with existing method by using various indoor images to demonstrate the superiority of the proposed algorithms.

A Study on Comparing algorithms for Boxing Motion Recognition (권투 모션 인식을 위한 알고리즘 비교 연구)

  • Han, Chang-Ho;Kim, Soon-Chul;Oh, Choon-Suk;Ryu, Young-Kee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.111-117
    • /
    • 2008
  • In this paper, we describes the boxing motion recognition which is used in the part of games, animation. To recognize the boxing motion, we have used two algorithms, one is principle component analysis, the other is dynamic time warping algorithm. PCA is the simplest of the true eigenvector-based multivariate analyses and often used to reduce multidimensional data sets to lower dimensions for analysis. DTW is an algorithm for measuring similarity between two sequences which may vary in time or speed. We introduce and compare PCA and DTW algorithms respectively. We implemented the recognition of boxing motion on the motion capture system which is developed in out research, and depict the system also. The motion graph will be created by boxing motion data which is acquired from motion capture system, and will be normalized in a process. The result has implemented in the motion recognition system with five actors, and showed the performance of the recognition.

  • PDF

Recognition of Partially Occluded Binary Objects using Elastic Deformation Energy Measure (탄성변형에너지 측도를 이용한 부분적으로 가려진 이진 객체의 인식)

  • Moon, Young-In;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.63-70
    • /
    • 2014
  • Process of recognizing objects in binary images consists of image segmentation and pattern matching. If binary objects in the image are assumed to be separated, global features such as area, length of perimeter, or the ratio of the two can be used to recognize the objects in the image. However, if such an assumption is not valid, the global features can not be used but local features such as points or line segments should be used to recognize the objects. In this paper points with large curvature along the perimeter are chosen to be the feature points, and pairs of points selected from them are used as local features. Similarity of two local features are defined using elastic deformation energy for making the lengths and angles between gradient vectors at the end points same. Neighbour support value is defined and used for robust recognition of partially occluded binary objects. An experiment on Kimia-25 data showed that the proposed algorithm runs 4.5 times faster than the maximum clique algorithm with same recognition rate.

Fast Disparity Estimation Method Considering Temporal and Spatial Redundancy Based on a Dynamic Programming (시.공간 중복성을 고려한 다이내믹 프로그래밍 기반의 고속 변이 추정 기법)

  • Yun, Jung-Hwan;Bae, Byung-Kyu;Park, Se-Hwan;Song, Hyok;Kim, Dong-Wook;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.787-797
    • /
    • 2008
  • In this paper, we propose a fast disparity estimation method considering temporal and spatial redundancy based on a dynamic programming for stereo matching. For the first step, the dynamic programming is performed to estimate disparity vectors with correlation between neighboring pixels in an image. Next, we efficiently compensate regions, which disparity vectors are not allocated, with neighboring disparity vectors assuming that disparity vectors in same object are quite similar. Moreover, in case of video sequence, we can decrease a complexity with temporal redundancy between neighboring frames. For performance comparison, we generate an intermediate-view image using the estimated disparity vector. Test results show that the proposed algorithm gives $0.8{\sim}2.4dB$-increased PSNR(peak signal to noise ratio) compared to a conventional block matching algorithm, and the proposed algorithm also gives approximately 0.1dB-increased PSNR and $48{\sim}68%$-lower complexity compared to the disparity estimation method based on general dynamic programming.

An Efficient Method to Extract the Micro-Motion Parameter of the Missile Using the Time-Frequency Image (시간-주파수 영상을 이용한 효과적인 미사일 미세운동 변수 추출 방법)

  • Choi, In-O;Kim, Si-Ho;Jung, Joo-Ho;Kim, Kyung-Tae;Park, Sang-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.557-565
    • /
    • 2016
  • It is very difficult to intercept the missiles because of the small radar cross-section and the high maneuverability. In addition, due to the decoy with the similar motion parameters, additional features other than those of the translation motion parameters need to be developed. In this paper, for the successful recognition of missiles, we propose an efficient method to extract micro-motion parameters and scatterers of the missile engaged in the micro motion. The proposed method extracts motion parameters and scatterers by using the matching score between the modeled micro-Doppler function and the time-frequency binary image as a cost function. Simulation results using a target composed of the point scatterer show the parameters and the scatterers were accurately extracted.

Reconstruction of High Resolution Images by ARPS Motion Estimation and POCS Restoration (ARPS 움직임 추정과 POCS 복원을 동시에 이용하는 HR 영상 재구성)

  • Song, Hee-Keun;Kim, Yong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.288-296
    • /
    • 2009
  • In POCS (projection onto convex sets)-based reconstruction of HR (high resolution) image, the quality of reconstructed image is gradually improved through iterative motion estimation and image restoration. The amount of computation, however, increases because of the repeated inter-frame motion estimation. In this paper, an HR reconstruction algorithm is proposed where modified ARPS (adaptive rood pattern search) and POCS are simultaneously performed. In the modified ARPS, the motion estimates obtained from phase correlation or from the previous steps in POCS restoration are utilized as the initial reference in the motion estimation. Moreover, estimated motion is regularized with reference to the neighboring blocks' motion to enhance the reliability. Computer simulation results show that, when compared to conventional methods which are composed of full search block matching and POCS restoration, the proposed method is about 30 times faster and yet produces HR images of almost equal or better quality.

Short-term Construction Investment Forecasting Model in Korea (건설투자(建設投資)의 단기예측모형(短期豫測模型) 비교(比較))

  • Kim, Kwan-young;Lee, Chang-soo
    • KDI Journal of Economic Policy
    • /
    • v.14 no.1
    • /
    • pp.121-145
    • /
    • 1992
  • This paper examines characteristics of time series data related to the construction investment(stationarity and time series components such as secular trend, cyclical fluctuation, seasonal variation, and random change) and surveys predictibility, fitness, and explicability of independent variables of various models to build a short-term construction investment forecasting model suitable for current economic circumstances. Unit root test, autocorrelation coefficient and spectral density function analysis show that related time series data do not have unit roots, fluctuate cyclically, and are largely explicated by lagged variables. Moreover it is very important for the short-term construction investment forecasting to grasp time lag relation between construction investment series and leading indicators such as building construction permits and value of construction orders received. In chapter 3, we explicate 7 forecasting models; Univariate time series model (ARIMA and multiplicative linear trend model), multivariate time series model using leading indicators (1st order autoregressive model, vector autoregressive model and error correction model) and multivariate time series model using National Accounts data (simple reduced form model disconnected from simultaneous macroeconomic model and VAR model). These models are examined by 4 statistical tools that are average absolute error, root mean square error, adjusted coefficient of determination, and Durbin-Watson statistic. This analysis proves two facts. First, multivariate models are more suitable than univariate models in the point that forecasting error of multivariate models tend to decrease in contrast to the case of latter. Second, VAR model is superior than any other multivariate models; average absolute prediction error and root mean square error of VAR model are quitely low and adjusted coefficient of determination is higher. This conclusion is reasonable when we consider current construction investment has sustained overheating growth more than secular trend.

  • PDF

Accelerated compression of sub-images by use of effective motion estimation and difference image methods in integral imaging (집적영상에서 효율적인 물체움직임 추정 및 차 영상 기법을 이용한 서브영상의 고속 압축)

  • Lee, Hyoung-Woo;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2762-2770
    • /
    • 2012
  • In this paper, we propose a novel approach to effectively compress the sub-images transformed from the picked-up elemental images in integral imaging, in which motion vectors of the object in each sub-image are fast and accurately estimated and compensated by combined use of MSE(mean square error)-based TSS(tree-step search) and FS(full search) schemes. This is, the possible object areas in each sub-image are searched by using the fast TSS algorithm in advance, then the these selected object areas are fully searched with the accurate FS algorithm. Furthermore, the sub-images in which all object's motion vectors are compensated, are transformed into the residual images by using the difference image method and finally compressed with the MPEG-4 algorithm. Experimental results reveal that the proposed method shows 214% improvement in the compression time per each image frame compared to that of the conventional method while keeping the same compression ratio with the conventional method. These successful results confirm the feasibility of the proposed method in the practical application.