최근 비디오를 즐기는 방법에 있어서 다양한 형식 및 기기가 사용되고 있으며, 이러한 실질적 요구를 충족시키기 위한 방법으로 빠른 비디오 변환 기술이 필요하다. 비디오 변환 기술 중 해상도 축소를 위한 새로운 움직임 벡터 재예측 방법을 제안한다. 줄어든 영상 내 블록의 움직임 벡터를 결정하기 위해 원본 영상 내 대응 되는 위치의 2개 이상의 움직임 벡터들을 K-means clustering 방법 기반으로 다중 후보 움직임 벡터를 결정하고, 결정된 움직임 벡터 중에서 차이의 절대값 합이 최소가 되는 움직임 벡터를 줄어든 영상 내 블록을 위한 움직임 벡터로 결정한다,. 실험 결과 비디오 변환 없이 압축을 수행한 연산시간에 비해 9% 정도의 연산시간이 필요하였으며, 압축 효율은 BR-RATE가 약 17정도 증가하여 기존의 방식의 증가량에 비해 60%로 줄어든 결과를 보여주었다.
본 논문은 기존 위치기반 서비스에서 최근접질의 및 한 지점에서의 방향성분을 고려한 최근접질의의 단점을 해소하고자 가중치 벡터합을 이용하는 새로운 검색방법을 제안한다. 검색반경으로 1차 필터링된 영역에서, 2차 필터링을 위해 이용자의 이동방향, 관심방향 및 검색각도를 조합한 방향정보를 이용한다. 이동방향은 일정구간내 존재하는 벡터들의 가중치 합으로 계산하며, 검색각도를 $0{\sim}360^{\circ}$까지 세분화하여 검색방향에 대한 범위를 조절 하도록 한다. 본 검색방법에 사용되는 데이터는 촬영위치가 기록된 정지영상 및 동영상, 업체나 관광지의 위치정보와 함께 소비자에게 제공되는 텍스트, 웹, 영상 등 각종 미디어 형태의 데이터가 될 수 있다. 제안하는 방법은 이동 중인 이용자가 현 위치를 기준으로 일정 반경 내에 있으면서 유사방향에 부합하는 미디어만을 검색하도록 함으로써, 이미 지났거나 혹은 관련 없는 방향의 미디어를 배제한 검색결과를 제공하기 때문에 기존의 위치만을 고려한 검색방법에 비해 보다 정확한 검색을 보장할 수 있으며, 방향성을 고려한 기존 최근접질의 에 비해서도 보다 유연하고 포괄적인 검색결과를 보장한다.
본 논문에서는 비디오코딩의 움직임 추정을 위한 빠른 블록 합 피라미드 알고리즘(FBSPA: Fast Block Sum Pyamid Algorithm)을 제안하였다. 제안된 알고리즘은 블록 합 피라미드 알고리즘, 블록 정합 움직임 추정을 위한 효율적인 다단계 연속 제거 알고리즘, 움직임 벡터 추정을 위한 빠른 알고리즘에 기초하고 있다. 제안된 알고리즘은 블록 합 피라미드알고리즘의 연산량을 감소시키기 위하여 블록 합 피라미드알고리즘에 부분 왜곡 제거 기법을 적용하였다. 제안된 방안이 블록 합 피라미드 알고리즘의 연산량을 최대 2.9% 감소시킬 수 있음을 실험을 통하여 확인하였다.
본 논문에서는 다입력 퍼지 로직 시스템에서 생기는 퍼지 규칙수의 기하급수적 증가를 막기 위하여, 주어진 퍼지 시스템의 THEN 부분을 이용하여 퍼지 규칙 벡터를 정의하고, 이를 이용하는 2계층의 계층 퍼지 시스템으로 변환하는 방법을 제시한다. 여기에서, 1번째 계층에서는 주어진 퍼지 시스템으로부터 생성되는 일차독립의 퍼지 규칙 벡터를 사용하고, 2계층에서는 1계층에서 사용된 퍼지 규칙 벡터들의 선형 합을 사용한다. 변환된 2계층의 퍼지 시스템은 주어진 퍼지 시스템과 동일한 근사 능력을 가질 뿐 아니라, 더 적은 수의 퍼지 규칙을 가짐을 보인다.
랜덤워크 기반 노드 랭킹 방식 중 하나인 RWR(Random Walk with Restart) 기법은 희소행렬 벡터 곱셈 연산과 벡터 간의 합 연산을 반복적으로 수행하며, RWR 의 수행 시간은 희소행렬 벡터 곱셈 연산 방법에 큰 영향을 받는다. 본 논문에서는 CSR5(Compressed Sparse Row 5) 기반 희소행렬 벡터 곱셈 방식과 CSR-vector 기반 희소행렬 곱셈 방식을 채택한 GPU 기반 RWR 기법 간의 비교 실험을 수행한다. 실험을 통해 데이터 셋의 특징에 따른 RWR 의 성능 차이를 분석하고, 적합한 희소행렬 벡터 곱셈 방안 선택에 관한 가이드라인을 제안한다.
본 논문에서는 그리드 탐색과 트랜스포머를 사용한 그룹 행동 인식 모델을 제안한다. 추출된 여러 사람의 스켈레톤 정보를 차분 벡터, 변위 벡터, 관계 벡터로 변환하고 사람별로 묶어 이를 TimeDistributed 함수에 넣고 풀링을 한다. 이를 트랜스포머 모델의 입력으로 넣고 그룹 행동 인식 분류를 출력하였다. 논문에서 3가지 벡터를 입력으로 하여 합치고 트랜스포머 계층을 거친 모델과 3가지 벡터를 입력으로 하고 계층적으로 트랜스포머 모델을 거쳐 행동 인식 분류를 출력하는 두 가지 모델을 제안한다. 3가지 벡터를 합친 모델에서 클래스 분류 정확도는 CAD 데이터 세트 96.6%, Volleyball 데이터 세트 91.4%, 계층적 트랜스포머 모델은 CAD 데이터 세트 96.8%, Volleyball 데이터 세트 91.1%를 얻었다
DVB-S2 (Digital Video Broadcasting - Satellite Version 2)와 같은 위성 통신 시스템은 낮은 신호 대 잡음 비 (SNR; Signal-to-Noise Ratio) 및 큰 주파수 오차에서의 동작이 요구되므로 인해 초기 프레임 동기 과정에서 강건한 프레임 동기 획득을 위한 상관 방식이 필요하다. 초기 프레임 동기 획득을 위해서는 기존의 다양한 상관 방식이 존재하며 채널 환경에 따라 이들 상관 방식은 각각 다른 특성 및 성능을 갖는다. 본 논문에서는 낮은 신호 대 잡음 비 영역 및 큰 주파수 오차 존재 하에서도 우수한 성능을 보이는 상관기 구조를 제시하고 그 성능을 분석 및 검증한다. 제안하는 상관 방식은 동기 수열 내에서 확장된 동기 심볼 거리에 대한 차등 상관의 크기 합과 벡터 합을 각각 이용하며, 계산된 상관값과 수신신호의 Euclidean 거리를 활용하므로써 수신 신호와 동기 수열의 상관도를 극대화하는 효과를 갖는다. 크기 합 상관 방식의 경우 4 dB 이하의 신호 대잡음 비에서 주파수 오차의 존재 유무에 관계없이 최대 우도 (ML; Maximum likelihood) 방식의 근사화를 통해 유도된 방식을 포함한 기존의 알려진 모든 상관 방식보다 향상된 오율을 가지며, 벡터 합 상관 방식은 주파수 오차 감소함에 따라 크기 합 상관 방식보다도 더욱 우수한 성능을 가진다.
가변생체인식(Changeable Biometrics)이란 생체정보의 도난이나 도용 시 개인의 프라이버시를 보호하기 위해 원 생체정보를 사용하지 않고, 생체정보를 변환하여 변환된 생체정보로 개인을 인증하는 방법이다. 본 논문은 통계적 형상 기반의 얼굴인식(Statistical appearance based face recognition)에 적용될 수 있는 가변얼굴템플릿 생성 방법에 대해 제안한다. 상이한 두 개의 통계적 형상 기반의 얼굴특징 방법을 이용하여 두 개의 얼굴특징벡터를 추출하고, 추출된 두 개의 얼굴특징벡터를 정규화 후 각 특징벡터들의 요소의 순서를 재배열 시킨다. 가변얼굴템플릿은 정규화 되고 순서가 재배열된 특징벡터들의 가중 합으로 생성된다. 두 개의 서로 다른 얼굴특징벡터의 가중 합으로 하나의 가변얼굴템플릿을 생성하므로, 가중 합의 방법과 생성된 가변얼굴템플릿을 알더라도 원 얼굴 특징벡터를 복원할 수 없다. 또한, 생성된 가변얼굴템플릿의 도난 시 새로운 가변얼굴템플릿의 생성은 각 벡터의 순서를 재배열시키는 규칙을 변경함으로써 가능하다. 그러므로 제안한 가변얼굴템플릿을 이용하여 개인 인증 시, 개인의 얼굴템플릿을 도난당하더라도 원 얼굴특징정보를 복원 할 수 없고 또한 새로운 가변얼굴템플릿으로 대체 할 수 있어 생체정보의 도난 시 발생할 수 있는 프라이버시 침해의 문제를 해결 할 수 있다. 제안한 방법은 AR-face DB를 이용하여 성능과 보안성에 대해 평가하였다.
본 논문은 실험자료에 대한 분석모형으로 이원 분산분석모형을 가정한다. 고정효과 모형의 가정하에 요인별 변동량을 구하기 위한 방법으로 제1종 분석을 다루고 있다. 모형의 순차적 적합에 따라 얻어지는 요인별 제곱합의 계산방법으로 대수적 방법이 아닌 사영에 의한 분석방법을 제공한다. 관측자료를 다차원상의 공간벡터로 간주할 때, 최소 제곱법에 의한 요인별 변동량은 계획행렬로 생성되는 모수추정 공간에서 요인별 부분공간으로의 사영에 이르는 거리 제곱으로 구해질 수 있음을 논의하고 있다. 또한 사영행렬로 부터의 고유벡터와 고유근을 이용하여 요인별 변동량을 구하는 방법을 제공하고 있다. 균형자료나 불균형자료에서 모형의 순차적 적합에 따른 제1종 분석이 행해질 때 요인별 변동량의 합은 처리제곱합과 일치하나 제2종 분석의 경우 불균형자료에서 이러한 성질이 만족되지 않음을 논의하고 있다.
본 논문에서는 셀룰러 네트워크상의 간섭정렬을 위한 송수신벡터를 구하는 반복 알고리즘들을 제안한다. 기존의 간섭채널상의 간섭정렬을 위해 고안된 반복 알고리즘을 셀룰러 네트워크에 적용하는 것이 물론 가능하지만, 높은 합용량을 달성하려면 큰 반복횟수가 필요하다. 본 논문에서 제안된 알고리즘의 핵심은 상향링크의 송신벡터 그리고 하향링크의 수신벡터를 갱신할 때 셀내간섭을 고려하지 않는다는 점이다. 모의실험은 간섭정렬을 위해 다중안테나와 단일 반송파가 사용되었을 때, 제안된 알고리즘이 기존의 알고리즘보다 주어진 반복횟수에서 월등히 높은 합용량을 달성함을 보인다. 또한 제안된 알고리즘이 간섭정렬을 위해 단일 안테나와 다중 부반송파가 사용되었을 때도 기존 간섭정렬 알고리즘보다 성능이 우수함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.