• Title/Summary/Keyword: 벡터센서

Search Result 402, Processing Time 0.028 seconds

Registration Method between High Resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 정합 기법)

  • Jeon, Hyeongju;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.

Sensorless Speed Control of Induction Motor using Model Reference Adaptive Control and Direct Torque Control System (모델기준적응제어 및 직접토크제어 시스템을 이용한 유도전동기의 센서리스 속도제어)

  • Kim, Sung-Hwan;Jeong, Bum-Dong;Yoon, Doo-O;Lee, Sung-Gun;Oh, Sae-Gin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2708-2715
    • /
    • 2012
  • This paper proposes a new sensorless speed control scheme of induction motor using Model Reference Adaptive Control and Direct Torque Control System. The Model Reference Adaptive Control System is based on the comparison between the outputs of Reference Model and Adjustable Model. The error between the estimated quantities obtained by the two models is used to drive a suitable adaptation mechanism which generates the estimated rotor speed for the Adjustable Model. And the Direct Torque Control scheme controls torque and flux by restricting the flux and torque errors within respective hysteresis bands, and motor torque and flux are controlled by the stator voltage space vector using optimum inverter switching table. The simulation results of proposed method indicate good speed responses from the low speed range to the high, and also show favorable characteristics of load operation.

Communication-Efficient Representations for Certificate Revocation in Wireless Sensor Network (WSN에서의 효율적 통신을 위한 인증서 폐지 목록 표현 기법)

  • Maeng, Young-Jae;Mohaisen, Abedelaziz;Lee, Kyung-Hee;Nyang, Dae-Hun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.7
    • /
    • pp.553-558
    • /
    • 2007
  • In this paper, we introduce a set of structures and algorithms for communication efficient public key revocation in wireless sensor networks. Unlike the traditional networks, wireless sensor network is subjected to resources constraints. Thus, traditional public key revocation mechanisms such like the ordinary certificate revocation list is unsuitable to be used. This unsuitability is due to the huge size of required representation space for the different keys' identifiers and the revocation communication as the set of revoked keys grow. In this work, we introduce two communication-efficient schemes for the certificate revocation. In the first scheme, we utilize the complete subtree mechanism for the identifiers representation which is widely used in the broadcast encryption/user revocation. In the second scheme, we introduce a novel bit vector representation BVS which uses vector of relative identifiers occurrence representation. We introduce different revocation policies and present corresponding modifications of our scheme. Finally, we show how the encoding could reduce the communication overhead as well. Simulation results and comparisons are provided to show the value of our work.

Analysis of Sensor Fault Effect in Induction Motor Drives (유도전동기 드라이브 시스템에서 센서 고장효과 분석)

  • 이기상;류지수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.126-133
    • /
    • 2003
  • High performance induction motor drives are driven by two advanced control methods: vector control and direct torque control (DTC). In order to apply the control methods to the speed/position control systems, the informations on rotor speed and rotor or stator flux are required. The speed is measured by encoder, and the rotor or stator flux is estimated by using the motor parameters and measured currents. The control input generated on the basis of the information that is provided by abnormal sensors should be far from the desired value and deteriorates the overall control perfonnance. In this paper, the effects of sensor faults on the motor variables and the control performance of induction motor drives are analyzed by both theoretical approach and simulation study. The presented analysis results could be utilized for the purpose of developing a fault detection and isolation scheme in induction motor drives.

Multiple Target Position Tracking Algorithm for Linear Array in the Near Field (선배열 센서를 이용한 근거리 다중 표적 위치 추적 알고리즘)

  • Hwang Soo-Bok;Kim Jin-Seok;Kim Hyun-Sik;Park Myung-Ho;Nam Ki-Gon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.294-300
    • /
    • 2005
  • Generally, traditional approaches to track the target position are to estimate ranges and bearings by 2-D MUSIC (MUltiple 519na1 Classification) method. and to associate estimates of 2-D MUSIC made at different time points with the right targets by JPDA (Joint Probabilistic Data Association) filter in the near field. However, the disadvantages of these approaches are that these have the data association Problem in tracking multiple targets. and that these require the heavy computational load in estimating a 2-D range/bearing spectrum. In case multiple targets are adjacent. the tracking performance degrades seriously because the estimate of each target's Position has a large error. In this paper, we proposed a new tracking algorithm using Position innovations extracted from the senor output covariance matrix in the near field. The proposed algorithm is demonstrated by the computer simulations dealing with the tracking of multiple closing and crossing targets.

Development of Adaptive Moving Obstacle Avoidance Algorithm Based on Global Map using LRF sensor (LRF 센서를 이용한 글로벌 맵 기반의 적응형 이동 장애물 회피 알고리즘 개발)

  • Oh, Se-Kwon;Lee, You-Sang;Lee, Dae-Hyun;Kim, Young-Sung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.377-388
    • /
    • 2020
  • In this paper, the autonomous mobile robot whit only LRF sensors proposes an algorithm for avoiding moving obstacles in an environment where a global map containing fixed obstacles. First of all, in oder to avoid moving obstacles, moving obstacles are extracted using LRF distance sensor data and a global map. An ellipse-shaped safety radius is created using the sum of relative vector components between the extracted moving obstacles and of the autonomuos mobile robot. Considering the created safety radius, the autonomous mobile robot can avoid moving obstacles and reach the destination. To verify the proposed algorithm, use quantitative analysis methods to compare and analyze with existing algorithms. The analysis method compares the length and run time of the proposed algorithm with the length of the path of the existing algorithm based on the absence of a moving obstacle. The proposed algorithm can be avoided by taking into account the relative speed and direction of the moving obstacle, so both the route and the driving time show higher performance than the existing algorithm.

A Study on the Prediction of CNC Tool Wear Using Machine Learning Technique (기계학습 기법을 이용한 CNC 공구 마모도 예측에 관한 연구)

  • Lee, Kangbae;Park, Sungho;Sung, Sangha;Park, Domyoung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.15-21
    • /
    • 2019
  • The fourth industrial revolution is noted. It is a smarter factory. At present, research on CNC (Computerized Numeric Controller) is actively underway in the manufacturing field. Domestic CNC equipment, acoustic sensors, vibration sensors, etc. This study can improve efficiency through CNC. Collect various data such as X-axis, Y-axis, Z-axis force, moving speed. Data exploration of the characteristics of the collected data. You can use your data as Random Forest (RF), Extreme Gradient Boost (XGB), and Support Vector Machine (SVM). The result of this study is CNC equipment.

A Study on Speed Variable Proportional Resonant Current Controller of Single-Phase PMSM (단상 영구자석 동기전동기의 속도 가변형 비례공진 전류제어에 관한 연구)

  • Lee, Won-Seok;Hwang, Seon-Hwan;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.954-960
    • /
    • 2020
  • This paper proposes a speed variable proportional resonant current control method for a single-phase permanent magnet synchronous motor(PMSM). Due to the electromagnetic characteristics of a single-phase PMSM, negative and zero torques are generated in the part corresponding to the phase difference between the stator current and the back electromotive force. In addition, overcurrent limitation is required because of the low stator resistance and inductance in sensorless operation. When using the vector control for current control of single-phase PMSM under these conditions, processes of coordinate transformation, inverse coordinate transformation, and generation of virtual dq-axis components are required. However, the proposed variable speed proportional resonant current control method does not need the coordinate transformation used for AC motors. In this paper, we have confirmed stable maneuverability by using variable proportional resonant current control algorithm, and proposed sensorless control based on a mathematical model of a single-phase PMSM without a position sensor when reaching a constant speed. The usefulness of the current control method was verified through several experiments.

A Wearable Glove System for Rehabilitation of Finger Injured Patients (손가락 부상 환자의 재활을 위한 장갑형 웨어러블 시스템)

  • Ji-Hun Seong;Hyun-Jin Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.379-386
    • /
    • 2023
  • When patients suffer from finger injuries, their finger joints can become stiff and inflexible due to decreased ability to exercise the finger tendons. This can lead to a loss of strength and difficulty using their hands. To address this, it is important to provide patients with consistent rehabilitation treatment that can help restore finger flexibility and strength simultaneously. In this study, we propose wearable gloves that use FSRs (force sensitive resistors) for finger strength training. The glove is designed to be adjustable using rubber bands and a custom PCB is designed for signal acquisition. For the evaluation of finger strength training, the result was analyzed in four cases. We suggest a vector that represents the center of five finger forces, and the result shows that the vector can indicate the level of force balance.

Sensorless Vector Control of PMSM (PMSM 드라이브의 센서리스 벡터제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1140-1142
    • /
    • 2002
  • This paper is proposed to position and speed control of interior permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. The rotor position, which is an essential component of any vector control schemes, is calculated through the instantaneous stator flux position and an estimated flux value of rotating reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The validity of the proposed sensorless scheme is confirmed by simulation and its dynamic performance is examined in detail.

  • PDF