• Title/Summary/Keyword: 벡터망

Search Result 506, Processing Time 0.025 seconds

Generative Multi-Turn Chatbot Using Generative Adversarial Network (생성적 적대적 신경망을 이용한 생성기반 멀티턴 챗봇)

  • Kim, Jintae;Kim, Harksoo;Kwon, Oh-Woog;Kim, Young-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.25-30
    • /
    • 2018
  • 기존의 검색 기반 챗봇 시스템과 다르게 생성 기반 챗봇 시스템은 사전에 정의된 응답에 의존하지 않고 채팅 말뭉치를 학습한 신경망 모델을 사용하여 응답을 생성한다. 생성 기반 챗봇 시스템이 사람과 같이 자연스러운 응답을 생성하려면 이전 문맥을 반영해야 할 필요가 있다. 기존 연구에서는 문맥을 반영하기 위해 이전 문맥과 입력 발화를 통합하여 하나의 벡터로 표현했다. 이러한 경우 이전 문맥과 입력 발화가 분리되어 있지 않아 이전 문맥이 필요하지 않는 경우 잡음으로 작용할 수 있다. 본 논문은 이러한 문제를 해결하기 위해 입력 발화와 이전 문맥을 각각의 벡터로 표현하는 방법을 제안한다. 또한 생성적 적대적 신경망을 통해 챗봇 시스템을 보강하는 방법을 제안한다. 채팅 말뭉치(55,000 개의 학습 데이터, 5,000개의 검증 데이터, 5,260 개의 평가 데이터)를 사용한 실험에서 제안한 문맥 반영 방법과 생성적 적대적 신경망을 통한 챗봇 시스템 보강 방법은 BLEU와 임베딩 기반 평가의 성능 향상에 도움을 주었다.

  • PDF

Neural -Q met,hod based on $\varepsilon$-SVR ($\varepsilon$-SVR을 이용한 Neural-Q 기법)

  • 조원희;김영일;박주영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.162-165
    • /
    • 2002
  • Q-learning은 강화학습의 한 방법으로서, 여러 분야에 널리 응용되고 있는 기법이다. 최근에는 Linear Quadratic Regulation(이하 LQR) 문제에 성공적으로 적용된 바 있는데, 특히, 시스템모델의 파라미터에 대한 구체적인 정보가 없는 상태에서 적절한 입력과 출력만을 가지고 학습을 통해 문제를 해결할 수 있어서 상황에 따라서 매우 실용적인 대안이 될 수 있다. Neural Q-learning은 이러한 Q-learning의 Q-value를 MLP(multilayer perceptron) 신경망의 출력으로 대치시킴으로써, 비선형 시스템의 최적제어 문제를 다룰 수 있게 한 방법이다. 그러나, Neural Q방식은 신경망의 구조를 먼저 결정한 후 역전파 알고리즘을 이용하여 학습하는 절차를 취하기 때문에, 시행착오를 통하여 신경망 구조를 결정해야 한다는 점, 역전파 알고리즘의 적용으로 인해 신경망의 연결강도 값들이 지역적 최적해로 수렴한다는 점등의 문제점을 상속받는 한계가 있다. 따라서, 본 논문에서는 Neural-0 학습의 도구로, 역전파 알고리즘으로 학습되는 MLP 신경망을 사용하는 대신 최근 들어 여러 분야에서 그 성능을 인정받고 있는 서포트 벡터 학습법을 사용하는 방법을 택하여, $\varepsilon$-SVR(Epsilon Support Vector Regression)을 이용한 Q-value 근사 기법을 제안하고 관련 수식을 유도하였다. 그리고, 모의 실험을 통하여, 제안된 서포트 벡터학습 기반 Neural-Q 방법의 적용 가능성을 알아보았다.

Speech Recognition in the Noisy Environment Using Multi-Band-Based Likelihood Measure (다중 대역기반 우도 측정을 이용한 잡음 환경에서의 음성 인식)

  • 신원호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.315-318
    • /
    • 1998
  • 본 논문에서는 서브밴드 및 전 대역(full band)으로부터 얻은 특징 벡터를 함께 사용하여 잡음 환경에서 음성인식 시스템의 성능을 향상시키는 방법을 제안하였다. 이는 인식시 잡음에 오염된 대역에서 얻은 특징 벡터를 제거하는데 따른 정보 손실을 막기 위해 전 대역으로부터 얻은 특징 벡터를 함께 이용하며 신호 대 잡음비가 높은 대역을 강조하여 각 모델에 대한 확률 값을 계산한다. 전화망에서 수집된 데이터베이스를 이용하여 인식 실험을 수행한 결과 비교적 넓은 주파수 대역에 걸쳐 분포된 잡음의 경우에도 인식 성능을 향상시킬 수 있었다.

  • PDF

5-axis Machining of Impellers using Geometric Shape Information and a Vector Net (기하학적 형상정보와 벡터망을 이용한 임펠러의 5축가공)

  • Hwang, Jong-Dae;Yun, Il-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • Two rotational motions of the 5-axis machine tool maximize the degree of freedom of the tool axis vector, which improves tool accessibility; however, this lowers feed speed and rigidity, which impairs machining stability. In addition, cutting efficiency is lowered when compared with a flat end mill because typically, the ball-end mill is used when machining by rotational motion. This study increased cutting efficiency by using a corner radius flat end mill during impeller roughing. Furthermore, we proposed a fixed controlled machining of the rotary motion using geometric shape information to improve the feed speed and machining stability. Finally, we proposed a finishing tool path generation method using a vector net to increase the convenience and practicality of tool path generation. To verify its effectiveness, we compared the machining time, shape accuracy, and surface quality of the proposed method and an existing dedicated module.

A Study on the Deep Neural Network based Recognition Model for Space Debris Vision Tracking System (심층신경망 기반 우주파편 영상 추적시스템 인식모델에 대한 연구)

  • Lim, Seongmin;Kim, Jin-Hyung;Choi, Won-Sub;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.794-806
    • /
    • 2017
  • It is essential to protect the national space assets and space environment safely as a space development country from the continuously increasing space debris. And Active Debris Removal(ADR) is the most active way to solve this problem. In this paper, we studied the Artificial Neural Network(ANN) for a stable recognition model of vision-based space debris tracking system. We obtained the simulated image of the space environment by the KARICAT which is the ground-based space debris clearing satellite testbed developed by the Korea Aerospace Research Institute, and created the vector which encodes structure and color-based features of each object after image segmentation by depth discontinuity. The Feature Vector consists of 3D surface area, principle vector of point cloud, 2D shape and color information. We designed artificial neural network model based on the separated Feature Vector. In order to improve the performance of the artificial neural network, the model is divided according to the categories of the input feature vectors, and the ensemble technique is applied to each model. As a result, we confirmed the performance improvement of recognition model by ensemble technique.

Comparison of Survival Prediction of Rats with Hemorrhagic Shocks Using Artificial Neural Network and Support Vector Machine (출혈성 쇼크를 일으킨 흰쥐에서 인공신경망과 지원벡터기계를 이용한 생존율 비교)

  • Jang, Kyung-Hwan;Yoo, Tae-Keun;Nam, Ki-Chang;Choi, Jae-Rim;Kwon, Min-Kyung;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.47-55
    • /
    • 2011
  • Hemorrhagic shock is a cause of one third of death resulting from injury in the world. Early diagnosis of hemorrhagic shock makes it possible for physician to treat successfully. The objective of this paper was to select an optimal classifier model using physiological signals from rats measured during hemorrhagic experiment. This data set was used to train and predict survival rate using artificial neural network (ANN) and support vector machine (SVM). To avoid over-fitting, we chose the best classifier according to performance measured by a 10-fold cross validation method. As a result, we selected ANN having three hidden nodes with one hidden layer and SVM with Gaussian kernel function as trained prediction model, and the ANN showed 88.9 % of sensitivity, 96.7 % of specificity, 92.0 % of accuracy and the SVM provided 97.8 % of sensitivity, 95.0 % of specificity, 96.7 % of accuracy. Therefore, SVM was better than ANN for survival prediction.

A Study on Reducing Learning Time of Deep-Learning using Network Separation (망 분리를 이용한 딥러닝 학습시간 단축에 대한 연구)

  • Lee, Hee-Yeol;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.273-279
    • /
    • 2021
  • In this paper, we propose an algorithm that shortens the learning time by performing individual learning using partitioning the deep learning structure. The proposed algorithm consists of four processes: network classification origin setting process, feature vector extraction process, feature noise removal process, and class classification process. First, in the process of setting the network classification starting point, the division starting point of the network structure for effective feature vector extraction is set. Second, in the feature vector extraction process, feature vectors are extracted without additional learning using the weights previously learned. Third, in the feature noise removal process, the extracted feature vector is received and the output value of each class is learned to remove noise from the data. Fourth, in the class classification process, the noise-removed feature vector is input to the multi-layer perceptron structure, and the result is output and learned. To evaluate the performance of the proposed algorithm, we experimented with the Extended Yale B face database. As a result of the experiment, in the case of the time required for one-time learning, the proposed algorithm reduced 40.7% based on the existing algorithm. In addition, the number of learning up to the target recognition rate was shortened compared with the existing algorithm. Through the experimental results, it was confirmed that the one-time learning time and the total learning time were reduced and improved over the existing algorithm.

Automatic Word Spacing of the Korean Sentences by Using End-to-End Deep Neural Network (종단 간 심층 신경망을 이용한 한국어 문장 자동 띄어쓰기)

  • Lee, Hyun Young;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.441-448
    • /
    • 2019
  • Previous researches on automatic spacing of Korean sentences has been researched to correct spacing errors by using n-gram based statistical techniques or morpheme analyzer to insert blanks in the word boundary. In this paper, we propose an end-to-end automatic word spacing by using deep neural network. Automatic word spacing problem could be defined as a tag classification problem in unit of syllable other than word. For contextual representation between syllables, Bi-LSTM encodes the dependency relationship between syllables into a fixed-length vector of continuous vector space using forward and backward LSTM cell. In order to conduct automatic word spacing of Korean sentences, after a fixed-length contextual vector by Bi-LSTM is classified into auto-spacing tag(B or I), the blank is inserted in the front of B tag. For tag classification method, we compose three types of classification neural networks. One is feedforward neural network, another is neural network language model and the other is linear-chain CRF. To compare our models, we measure the performance of automatic word spacing depending on the three of classification networks. linear-chain CRF of them used as classification neural network shows better performance than other models. We used KCC150 corpus as a training and testing data.

Inference Network-Based Retrieval Model for Web Search Environment (웹 검색 환경에 적용할 추론 망 기반 검색모델)

  • 최익규;김민구
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.19-21
    • /
    • 2001
  • 대다수의 사용자는 웹 검색에서 자신이 찾고자 하는 것을 표현할 때, 평균 2, 3개의 단어를 사용하고 있다. 벡터 모델이나 추론 망 모델에서 이런 질의 정보를 이용하여 좋은 결과를 얻기에는 몇 가지 어려움이 있다. 특히 추론 망 모델에서 많이 사용되는 유사도 계산식인 weighted-sum방법은 질의에 나타나는 단어의 수가 적고 많은 문서들이 이 단어들을 모두 가지고 있을 경우에 좋지 않은 검색결과를 보여주고 있다. 본 논문은 추론 망 모델에 적용되는 유사도 계산식인 weighted-sum방법을 개선하였고, 이를 기반으로 Web Trec 9의 자료를 검색하여 좋은 결과를 얻었다.

  • PDF

A Study on the Phoneme Recognition using RBFN (RBFN을 이용한 음소인식에 관한 연구)

  • 안종영
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.88-91
    • /
    • 1995
  • 개층형 신경망은 교사신호들의 학습으로 원하는 입출력간의 매핑을 할 수 있으므로 패턴분류를 위해 사용되어왔다. 본 논문은 계층형 신경망의 일종인 RBFN 중 GPFN 과 PNN으로 한국어 음소인식을 수행하였다. RBFN 의 구조는 계층형 신경망과 유사하나 차이점으로는 은닉층에서 시그모이드 함수, 참조벡터 및 학습알고리듬의 선택이 다르다. 특히 PNN 의 시그모이드 함수는 지수를 포함한 함수들로 대체되며 학습없이 패턴을 분류하므로 계산시간이 빠르게 수행된다. 본 실험에서는 한국어 단음절에서 모음과 자음을 추출하여 음소인식을 수행하였다. 실험 결과 학습과 평가데이타에 의한 인식률은 계층형 신경망과 비교하여 향상 되었으며, Hybrid 구성에 의한 실험에서도 항상된 인식률을 얻을 수 있었다.

  • PDF