Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.478-480
/
2001
본 논문에서는 실제 도로 영상에서 움직이는 물체를 검출하고 판별하기 위한 새로운 방법을 제안한다. 제안된 방법은 연속된 영상의 차영상에 적응적 임계간을 적용하여 움직임이 있는 후보 영역을 검출한다. 검출된 후보영역에 관심의 대상이 되는 물체의 포함 여부를 판별하기 위해 신경망을 사용한다. 신경망의 입력으로 사용되는 특징 벡터들의 차원을 줄이기 위해, 후보 영역의 스케일 공간 웨이블릿 특징 벡터 (scale-space wavelet feature vector)들을 사용한다. 제안된 방법은 비디오 기반의 응용 프로그램에 유용하게 이용될 수 있으며 특히, 시간에 따라 조명이 변하거나 잡음이 포함된 비디오 영상에 대해 좋은 결과를 얻을 수 있다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.26
no.3B
/
pp.338-346
/
2001
이 논문에서는 잡음에 대해 유연성이 있는 신경망과 차영상법-DCT를 이용한 얼굴인식 알고리즘을 제안한다. 동일환경(조도의 세기, 얼굴에서 카메라까지의 거리)에서 연속적으로 두 개의 영상을 캡쳐했다. 이 때 한 영상은 얼굴을 포함하지 않고 다른 영상은 얼굴을 포함하게 된다. 차영상 방법을 이용하여 두 개의 이미지로부터 얼굴영상과 배경영상을 분리하고 그 다움에 분리된 얼굴영역에서 사각영역을 추출하여 이 영역을 얼굴의 특징영역으로 이용하였다. 이 사각 영역은 눈, 코, 입, 눈썹 등이 포함된다. 다음으로 이 영역에 대해 DWT 연산을 수행한후 특징 백터를 추출하였고, 추출된 특징벡터는 정규화 되어 신경망의 입력벡터로 사용되었다. 시뮬레이션 결과 학습된 얼굴영상에 대해서는 100% 인식률을 보였고 학습되지 않는 얼굴 영상에 대해서는 92.25%의 인식률을 보였다.
Kim, Jong-Il;Lee, Jung-Suk;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
Proceedings of the KIEE Conference
/
2005.10b
/
pp.349-351
/
2005
현재 다양한 인터넷 콘텐츠들에 의해 많은 정보가 공유되고 있으며, 유익한 정보들과 더불어 성인물과 같은 유해한 정보들이 있다. 이로 인하여 여러 문제점들이 야기되고 있으며, 이를 해결하기 위해 다양한 방법들이 제안되고 있다. 그 중에서 성인 영상 차단을 위한 연구도 많이 행해지고 있으며 주로 색상을 이용한 방법을 사용하고 있다. 그러나 살색과 유사한 영상이나 노출이 심한 영상에는 성인 영상 검출의 신뢰성이 떨어지는 단점을 갖는다. 본 논문에서는 이런 문제점을 해결하기 위해 새로운 성인 영상 차단 방법을 제안한다. 기존의 제안된 살색 검출을 이용한 방법을 기반으로 성인 영상물로 판정될 수 있는 신체 부위를 검출함으로써 강인한 성인 영상 차단을 한다. 신체 부위에 대한 판별을 위해 여러 기저 영상에서 특징 벡터를 추출하고. 이 벡터를 Back Propagation(BP) 신경망의 데이터로 이용하여 학습한다. 제안한 성인 영상 차단 방법의 성능을 여러 장의 살색과 유사한 색상의 물체 영상과 노출이 심한 영상, 성인 영상을 이용한 종합적인 실험 결과인 성인 영상 검출률을 통해 증명한다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.541-543
/
2002
본 논문에서는 HOLA(고차국소자동상관계수)를 이용한 특징추출과 BP(Backpropagation Network) 알고리즘을 이용하여 얼굴을 인식하는 방법을 제안한다. 이를 위해 동일한 환경, 즉 일정한 조도 하에서 카메라로부터 동일거리에 있는 영상을 256$\times$256 크기의 그레이 스케일(Gray Scale)로 취득하여 영상내의 잡음을 가우시안(Gaussian) 필터를 이용하여 제거한다. 차영상을 이용하여 얼굴영역을 분리한 후 얼굴영역의 특징벡터를 구하기 위하여 HOLA(고차 국소 자동 상관함수)를 사용한다. 계산된 특징벡터는 BP 신경망의 학습을 통하여 얼굴인식을 위한 데이터로 사용된다. 시뮬레이션을 통해 제안된 알고리즘에 의한 인식률향상과 속도 향상을 입증한다.
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.429-432
/
2010
주차장에서는 다양한 형태의 사건 사고가 발생하는데, 기존 DVR(CCTV)는 단순 영상녹화 기능만 지원하므로, 이를 효과적으로 분석하는데는 한계가 있다. 따라서, DVR의 영상카메라와 마이크를 통해서 입력되는 영상과 사운드 신호를 대상으로, 해당 영상이 발생하는 음향 신호의 종류를 파악하여, 특정 음향이 발생한 영상구간을 저장하여 이를 검색할 수 있다면, 주차장 관리자가 효과적으로 사건 사고를 대처할 수 있게 된다. 본 연구에서는 주차장에서 발생하는 차량관련 음향(충돌음, 과속음, 경적음, 유리파손, 비명)을 분류하기 위해 효과적인 특징벡터를 제안하고, 제안한 특징벡터를 이용하여 신경망 차량음향분류기를 설계하여 성능을 평가함으로써, 효과적으로 차량음향을 분류하기 위한 방법을 제안하였다. 또한, 신경망 차량음향분류기를 DVR시스템과 연동하여, 마이크로부터 입력되는 음향신호를 실시간 분석하고, 특정 소리가 발생한 영상구간을 기록함으로써, 음향 키워드에 의해서 해당 사고영상을 검색 및 디스플레이하는 시스템을 개발하였다.
백터 양자화기 설계는 다차원의 목적함수를 최소화하는 학습 알고리즘을 필요로 한다. 일반화된 Lloyd 방법(GLA)은 벡터 양자화기 설계를 위해 오늘날 가장 널리 사용되는 알고리즘이다. GLA 는 일괄처리(batch) 방식으로 코드북을 생성하며 목적함수를 단조 감소시키는 강하법(descent algorithm)의 일종이다. 한편 Kohonen 학습법(KLA)은 학습벡터가 입력되는 동안 코드북이 갱신되는 온라인 벡터 양자화기 설계 알고리즘 이다. KLA는 원래 신경망 학습을 위해 Kohonen에 의해 제안되었다. KLA 역시 GLA와 마찬가지로 강하법의 일종이라 할 수 있다. 따라서 이들 두 알고리즘은, 비록 사용하기 편리하고 안정적으로 동작을 하지만, 극소(local minimum) 점으로 수렴하는 문제를 안고 있다. 우리는 이 문제와 관련하여 simulated annealing(SA) 방법의 응용을 논하고자 한다. SA는 현재까지 극소에 빠지지 않고 최소(global minimum)로 수렴하면서, 해의 수렴이 (통계적으로) 보장되는 유일한 방법이라 할 수 있다. 우리는 먼저 GLA에 SA를 응용한 그 동안의 연구를 개괄한다. 다음으로 온라인 방식의 벡터 양자화가 설계에 SA 방법을 응용함으로써 SA 방법에 기초한 새로운 온라인 학습 알고리즘을 제안한다. 우리는 이 알고리즘을 OLVQ-SA 알고리즘이라 부르기로 한다. 가우스-마코프 소스와 음성데이터에 대한 벡터양자화 실험 결과 제안된 방법이 KLA 보다 일관되게 우수한 코드북을 생성함을 보인다.
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.892-895
/
2017
본 논문에서는 비분할 비디오로부터 이 비디오에 담긴 사람의 행동을 효과적으로 탐지해내기 위한 심층 신경망 모델을 제안한다. 일반적으로 비디오에서 사람의 행동을 탐지해내는 작업은 크게 비디오에서 행동 탐지에 효과적인 특징들을 추출해내는 과정과 이 특징들을 토대로 비디오에 담긴 행동을 탐지해내는 과정을 포함한다. 본 논문에서는 특징 추출 과정과 행동 탐지 과정에 이용할 심층 신경망 모델을 제시한다. 특히 비디오로부터 각 행동별 시간적, 공간적 패턴을 잘 표현할 수 있는 특징들을 추출해내기 위해서는 C3D 및 I-ResNet 합성곱 신경망 모델을 이용하고, 시계열 특징 벡터들로부터 행동을 자동 판별해내기 위해서는 양방향 BI-LSTM 순환 신경망 모델을 이용한다. 대용량의 공개 벤치 마크 데이터 집합인 ActivityNet 비디오 데이터를 이용한 실험을 통해, 본 논문에서 제안하는 심층 신경망 모델의 성능과 효과를 확인할 수 있었다.
본 연구에서는 영문 단어로부터 폰트를 분류하기 위해 연역적이고 국부적인 폰트 분류 방법을 제안한다. 이는 문자 인식 전에 한 단어에서 폰트를 분류하는 것을 말한다. 폰트 분류를 위해 활자 특성인 Ascender, Descender와 Serif가 사용된다. 입력 단어로부터 Ascender, Descender와 Serif가 추출되어 특징 벡터가 추출되고, 그 특징 벡터는 인공 신경망에 의해 입력 단어에 대한 폰트 그룹, 폰트 이름이 분류된다. 제안된 연역적이고 국부적인 폰트 분류 방법은 폰트 정보가 문자 분할기와 문자 인식기에 사용될 수 있게 한다 나아가, 특정 폰트에 따른 Mono-font 문자 분할기와 Mono-Font 문자 인식기로 구성되는 OCR 시스템을 구성할 수 있는 것을 가능하게 한다.
인공위성영상을 이용하여 벡터 지도 생성은 지형에 따른 건물, 도로, 농지 등에 관한 벡터를 추출하는 작업이 필요하다. 이 작업의 정확도는 지도의 정확도와 상관관계가 있기 때문에 건물 추출의 정확성이 달라진다. 따라서 건물추출의 정확성을 향상시키기 위해 본 연구에서는 위성영상에서 건물 추출 알고리즘을 제안하였다. 이 알고리즘은 인공신경망을 이용하여 건물의 그림자를 추적하고 이를 중심으로 건물위치와 외형을 추정하는 알고리즘을 제안하고 실험하였으며, 양호한 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.