• Title/Summary/Keyword: 벡터망

Search Result 506, Processing Time 0.029 seconds

Moving Object Detection rind Classification using Adaptive thresholding and Wavelet Transform (적응적 임계치와 웨이블릿 변환을 이용한 움직이는 물체 검출 및 판별)

  • 박혜선;이창우;김항준;김종배;이경미
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.478-480
    • /
    • 2001
  • 본 논문에서는 실제 도로 영상에서 움직이는 물체를 검출하고 판별하기 위한 새로운 방법을 제안한다. 제안된 방법은 연속된 영상의 차영상에 적응적 임계간을 적용하여 움직임이 있는 후보 영역을 검출한다. 검출된 후보영역에 관심의 대상이 되는 물체의 포함 여부를 판별하기 위해 신경망을 사용한다. 신경망의 입력으로 사용되는 특징 벡터들의 차원을 줄이기 위해, 후보 영역의 스케일 공간 웨이블릿 특징 벡터 (scale-space wavelet feature vector)들을 사용한다. 제안된 방법은 비디오 기반의 응용 프로그램에 유용하게 이용될 수 있으며 특히, 시간에 따라 조명이 변하거나 잡음이 포함된 비디오 영상에 대해 좋은 결과를 얻을 수 있다.

  • PDF

A Facial Image Segmentation for Video Coding and its Recognition Based on DWT

  • Lim, Chun-Hwan;Park, Jong-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.3B
    • /
    • pp.338-346
    • /
    • 2001
  • 이 논문에서는 잡음에 대해 유연성이 있는 신경망과 차영상법-DCT를 이용한 얼굴인식 알고리즘을 제안한다. 동일환경(조도의 세기, 얼굴에서 카메라까지의 거리)에서 연속적으로 두 개의 영상을 캡쳐했다. 이 때 한 영상은 얼굴을 포함하지 않고 다른 영상은 얼굴을 포함하게 된다. 차영상 방법을 이용하여 두 개의 이미지로부터 얼굴영상과 배경영상을 분리하고 그 다움에 분리된 얼굴영역에서 사각영역을 추출하여 이 영역을 얼굴의 특징영역으로 이용하였다. 이 사각 영역은 눈, 코, 입, 눈썹 등이 포함된다. 다음으로 이 영역에 대해 DWT 연산을 수행한후 특징 백터를 추출하였고, 추출된 특징벡터는 정규화 되어 신경망의 입력벡터로 사용되었다. 시뮬레이션 결과 학습된 얼굴영상에 대해서는 100% 인식률을 보였고 학습되지 않는 얼굴 영상에 대해서는 92.25%의 인식률을 보였다.

  • PDF

Adult Image Blocking using Feature Extraction based BP Neural Network (특징 추출 기반 BP 신경망을 이용한 성인 영상 차단)

  • Kim, Jong-Il;Lee, Jung-Suk;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.349-351
    • /
    • 2005
  • 현재 다양한 인터넷 콘텐츠들에 의해 많은 정보가 공유되고 있으며, 유익한 정보들과 더불어 성인물과 같은 유해한 정보들이 있다. 이로 인하여 여러 문제점들이 야기되고 있으며, 이를 해결하기 위해 다양한 방법들이 제안되고 있다. 그 중에서 성인 영상 차단을 위한 연구도 많이 행해지고 있으며 주로 색상을 이용한 방법을 사용하고 있다. 그러나 살색과 유사한 영상이나 노출이 심한 영상에는 성인 영상 검출의 신뢰성이 떨어지는 단점을 갖는다. 본 논문에서는 이런 문제점을 해결하기 위해 새로운 성인 영상 차단 방법을 제안한다. 기존의 제안된 살색 검출을 이용한 방법을 기반으로 성인 영상물로 판정될 수 있는 신체 부위를 검출함으로써 강인한 성인 영상 차단을 한다. 신체 부위에 대한 판별을 위해 여러 기저 영상에서 특징 벡터를 추출하고. 이 벡터를 Back Propagation(BP) 신경망의 데이터로 이용하여 학습한다. 제안한 성인 영상 차단 방법의 성능을 여러 장의 살색과 유사한 색상의 물체 영상과 노출이 심한 영상, 성인 영상을 이용한 종합적인 실험 결과인 성인 영상 검출률을 통해 증명한다.

  • PDF

Human Face Recognition using Feature Extraction Based on HOLA(Higher Order Local Autocorrelation) and BP Neural Networks (HOLA 기반 특징추출과 BP 신경망을 이용한 얼굴 인식)

  • 최광미;서요한;정채영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.541-543
    • /
    • 2002
  • 본 논문에서는 HOLA(고차국소자동상관계수)를 이용한 특징추출과 BP(Backpropagation Network) 알고리즘을 이용하여 얼굴을 인식하는 방법을 제안한다. 이를 위해 동일한 환경, 즉 일정한 조도 하에서 카메라로부터 동일거리에 있는 영상을 256$\times$256 크기의 그레이 스케일(Gray Scale)로 취득하여 영상내의 잡음을 가우시안(Gaussian) 필터를 이용하여 제거한다. 차영상을 이용하여 얼굴영역을 분리한 후 얼굴영역의 특징벡터를 구하기 위하여 HOLA(고차 국소 자동 상관함수)를 사용한다. 계산된 특징벡터는 BP 신경망의 학습을 통하여 얼굴인식을 위한 데이터로 사용된다. 시뮬레이션을 통해 제안된 알고리즘에 의한 인식률향상과 속도 향상을 입증한다.

  • PDF

Digital Video Record System for Classification of Car Accident Sounds in the Parking Lot. (주차장 차량사고 음향분류 DVR시스템)

  • Yoon, Jae-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.429-432
    • /
    • 2010
  • 주차장에서는 다양한 형태의 사건 사고가 발생하는데, 기존 DVR(CCTV)는 단순 영상녹화 기능만 지원하므로, 이를 효과적으로 분석하는데는 한계가 있다. 따라서, DVR의 영상카메라와 마이크를 통해서 입력되는 영상과 사운드 신호를 대상으로, 해당 영상이 발생하는 음향 신호의 종류를 파악하여, 특정 음향이 발생한 영상구간을 저장하여 이를 검색할 수 있다면, 주차장 관리자가 효과적으로 사건 사고를 대처할 수 있게 된다. 본 연구에서는 주차장에서 발생하는 차량관련 음향(충돌음, 과속음, 경적음, 유리파손, 비명)을 분류하기 위해 효과적인 특징벡터를 제안하고, 제안한 특징벡터를 이용하여 신경망 차량음향분류기를 설계하여 성능을 평가함으로써, 효과적으로 차량음향을 분류하기 위한 방법을 제안하였다. 또한, 신경망 차량음향분류기를 DVR시스템과 연동하여, 마이크로부터 입력되는 음향신호를 실시간 분석하고, 특정 소리가 발생한 영상구간을 기록함으로써, 음향 키워드에 의해서 해당 사고영상을 검색 및 디스플레이하는 시스템을 개발하였다.

  • PDF

On-line Vector Quantizer Design Using Simulated Annealing Method (Simulated Annealing 방법을 이용한 온라인 벡터 양자화기 설계)

  • Song, Geun-Bae;Lee, Haeng-Se
    • The KIPS Transactions:PartB
    • /
    • v.8B no.4
    • /
    • pp.343-350
    • /
    • 2001
  • 백터 양자화기 설계는 다차원의 목적함수를 최소화하는 학습 알고리즘을 필요로 한다. 일반화된 Lloyd 방법(GLA)은 벡터 양자화기 설계를 위해 오늘날 가장 널리 사용되는 알고리즘이다. GLA 는 일괄처리(batch) 방식으로 코드북을 생성하며 목적함수를 단조 감소시키는 강하법(descent algorithm)의 일종이다. 한편 Kohonen 학습법(KLA)은 학습벡터가 입력되는 동안 코드북이 갱신되는 온라인 벡터 양자화기 설계 알고리즘 이다. KLA는 원래 신경망 학습을 위해 Kohonen에 의해 제안되었다. KLA 역시 GLA와 마찬가지로 강하법의 일종이라 할 수 있다. 따라서 이들 두 알고리즘은, 비록 사용하기 편리하고 안정적으로 동작을 하지만, 극소(local minimum) 점으로 수렴하는 문제를 안고 있다. 우리는 이 문제와 관련하여 simulated annealing(SA) 방법의 응용을 논하고자 한다. SA는 현재까지 극소에 빠지지 않고 최소(global minimum)로 수렴하면서, 해의 수렴이 (통계적으로) 보장되는 유일한 방법이라 할 수 있다. 우리는 먼저 GLA에 SA를 응용한 그 동안의 연구를 개괄한다. 다음으로 온라인 방식의 벡터 양자화가 설계에 SA 방법을 응용함으로써 SA 방법에 기초한 새로운 온라인 학습 알고리즘을 제안한다. 우리는 이 알고리즘을 OLVQ-SA 알고리즘이라 부르기로 한다. 가우스-마코프 소스와 음성데이터에 대한 벡터양자화 실험 결과 제안된 방법이 KLA 보다 일관되게 우수한 코드북을 생성함을 보인다.

  • PDF

Learning Recurrent Neural Networks for Activity Detection from Untrimmed Videos (비분할 비디오로부터 행동 탐지를 위한 순환 신경망 학습)

  • Song, YeongTaek;Suh, Junbae;Kim, Incheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.892-895
    • /
    • 2017
  • 본 논문에서는 비분할 비디오로부터 이 비디오에 담긴 사람의 행동을 효과적으로 탐지해내기 위한 심층 신경망 모델을 제안한다. 일반적으로 비디오에서 사람의 행동을 탐지해내는 작업은 크게 비디오에서 행동 탐지에 효과적인 특징들을 추출해내는 과정과 이 특징들을 토대로 비디오에 담긴 행동을 탐지해내는 과정을 포함한다. 본 논문에서는 특징 추출 과정과 행동 탐지 과정에 이용할 심층 신경망 모델을 제시한다. 특히 비디오로부터 각 행동별 시간적, 공간적 패턴을 잘 표현할 수 있는 특징들을 추출해내기 위해서는 C3D 및 I-ResNet 합성곱 신경망 모델을 이용하고, 시계열 특징 벡터들로부터 행동을 자동 판별해내기 위해서는 양방향 BI-LSTM 순환 신경망 모델을 이용한다. 대용량의 공개 벤치 마크 데이터 집합인 ActivityNet 비디오 데이터를 이용한 실험을 통해, 본 논문에서 제안하는 심층 신경망 모델의 성능과 효과를 확인할 수 있었다.

A Priori and the Local Font Classification (연역적이고 국부적인 영문자의 폰트 분류법)

  • 정민철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.205-208
    • /
    • 2002
  • 본 연구에서는 영문 단어로부터 폰트를 분류하기 위해 연역적이고 국부적인 폰트 분류 방법을 제안한다. 이는 문자 인식 전에 한 단어에서 폰트를 분류하는 것을 말한다. 폰트 분류를 위해 활자 특성인 Ascender, Descender와 Serif가 사용된다. 입력 단어로부터 Ascender, Descender와 Serif가 추출되어 특징 벡터가 추출되고, 그 특징 벡터는 인공 신경망에 의해 입력 단어에 대한 폰트 그룹, 폰트 이름이 분류된다. 제안된 연역적이고 국부적인 폰트 분류 방법은 폰트 정보가 문자 분할기와 문자 인식기에 사용될 수 있게 한다 나아가, 특정 폰트에 따른 Mono-font 문자 분할기와 Mono-Font 문자 인식기로 구성되는 OCR 시스템을 구성할 수 있는 것을 가능하게 한다.

Estimation of building position in a satellite image using Neural Networks (신경회로망을 이용한 위성영상의 건물위치 추정)

  • 이주원;정원근;김광열;조원래;김영일;이건기
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.303-306
    • /
    • 2002
  • 인공위성영상을 이용하여 벡터 지도 생성은 지형에 따른 건물, 도로, 농지 등에 관한 벡터를 추출하는 작업이 필요하다. 이 작업의 정확도는 지도의 정확도와 상관관계가 있기 때문에 건물 추출의 정확성이 달라진다. 따라서 건물추출의 정확성을 향상시키기 위해 본 연구에서는 위성영상에서 건물 추출 알고리즘을 제안하였다. 이 알고리즘은 인공신경망을 이용하여 건물의 그림자를 추적하고 이를 중심으로 건물위치와 외형을 추정하는 알고리즘을 제안하고 실험하였으며, 양호한 결과를 얻었다.

  • PDF