• 제목/요약/키워드: 베이지안 확률기법

검색결과 114건 처리시간 0.023초

변분 베이지안 방법을 이용한 점집합의 오차제거 (Point Set Denoising Using a Variational Bayesian Method)

  • 윤민철;;이승용
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권5호
    • /
    • pp.527-531
    • /
    • 2008
  • 스캐너를 이용해 스캔한 데이타는 오차를 포함하고 있으며, 이러한 오차는 통계적인 성질을 갖는 경우가 많다. 이러한 이유에서 통계적인 방법은 오차 처리를 위해 매우 효과적인 방법이며, 최근 많은 연구가 이루어지고 있다. 이러한 통계적인 방법 중 대표적인 방법인 점 추정 방법은 데이타의 여러 성질을 나타내지 못하고 단지 확률이 최대가 되는 부분의 성질만을 나타내는 한계가 있으며, 이러한 한계로 인하여 오버피팅 문제가 발생하게 된다. 이러한 한계를 극복하고 오버피팅 문제를 해결하기 위해서 본 논문에서는 변분 베이지안 방법을 이용한다. 점집합의 오차를 제거하기 위해 지역적 근사곡면을 사용하고, 높이함수를 이용해서 근사곡면을 나타낸다. 변분 베이지안 방법을 사용하여 오차가 제거된 근사곡면을 구하고, 주어진 점들을 근사곡면으로 매핑하여 오차를 제거한다. 제시된 방법은 계량적 실험과 실제 스캔된 자료를 이용한 실험을 통하여 검증된다.

비이진 내재적 피드백 자료를 위한 변형된 베이지안 개인화 순위 방법 (Modified Bayesian personalized ranking for non-binary implicit feedback)

  • 김동우;이은령
    • 응용통계연구
    • /
    • 제30권6호
    • /
    • pp.1015-1025
    • /
    • 2017
  • 베이지안개인화순위(Bayesian personalized ranking) 방법은 내재적 피드백 자료를 분석하는 최첨단 추천시스템 통계기법 중 하나이다. 하지만, 기존의 베이지안개인화순위 방법은 내재적 피드백 자료를 변환한 이진 자료만을 고려하기 때문에 정보의 손실이 있을 수 있다는 단점이 있다. 이를 해결하기 위해 본 논문에서는 내재적 피드백 자료의 수치적 크기에 기반한 확실함의 정도(level of confidence)를 고려하는 변형베이지안개인화순위 방법을 제안한다. 제안한 방법은 기존 방법처럼 상품간의 개인선호도에 관한 직관적인 확률모형 구조를 여전히 지니면서 내재적 피드백의 수치적 크기를 확실함의 정도로 반영할 수 있다는 점에서 유용하다. 또한 제안한 변형 베이지안개인화순위 방법을 수치적으로 구현하기 위해 확률그라디언트하강(stochastic gradient descent) 기법에 기반한 계산 알고리즘을 제시한다. 마지막으로, 스팀 비디오 게임 실제 데이터 분석을 통하여 기존방법에 비해 우수한 성능을 입증한다.

베이지안 기법을 이용한 염해 콘크리트구조물의 내구성 예측 (Durability Prediction for Concrete Structures Exposed to Chloride Attack Using a Bayesian Approach)

  • 정현준;지광습;공정식;강진구
    • 콘크리트학회논문집
    • /
    • 제20권1호
    • /
    • pp.77-88
    • /
    • 2008
  • 본 논문에서는 염해를 받는 RC 구조물의 부식 내구성을 예측하기 위한 새로운 접근 방법을 제시한다. 이 예측 방법은, 현장 계측 데이터가 추가적으로 있을 때 베이스 정리 이론에 의하여 계속적으로 업데이팅을 할 수 있다. 모델 매개변수의 확률론적인 특성은 모델로 명백하게 고려된다. 염해 해석 모델의 절차를 간단하게 하기 위해서는, 내구성 한계의 확률은 라틴 하이퍼큐브 샘플 추출법에서 얻는 표본에서 결정된다. 이러한 새로운 방법은 중요한 콘크리트 구조물을 설계하기에 아주 유용하다. 그리고 모니터링을 통한 실 콘크리트구조물의 잔존수명을 예측 할 수 있다.

퍼지집합과 베이지안 확률 기법을 이용한 암설사면지형 분포지역 추출에 관한 연구 (The Study on the Extraction of the Distribution Potential Area of Debris Landform Using Fuzzy Set and Bayesian Predictive Discriminate Model)

  • 위눈솔;장동호
    • 한국지형학회지
    • /
    • 제24권3호
    • /
    • pp.105-118
    • /
    • 2017
  • The debris slope landforms which are existent in Korean mountains is generally on the steep slopes and mostly covered by vegetation, it is difficult to investigate the landform. Therefore a scientific method is required to come up with an effective field investigation plan. For this purpose, the use of Remote Sensing and GIS technologies for a spatial analysis is essential. This study has extracted the potential area of debrisslope landform formation using Fuzzy set and Bayesian Predictive Discriminate Model as mathematical data integration methods. The first step was to obtain information about debris locations and their related factors. This information was verified through field investigation and then used to build a database. In the second step, the map that zoning the study area based on the degree of debris formation possibility was generated using two modeling methods, and then cross validation technique was applied. In order to quantitatively analyze the accuracy of two modeling methods, the calculated potential rate of debrisformation within the study area was evaluated by plotting SRC(Success Rate Curve) and calculating AUC(Area Under the Curve). As a result, the prediction accuracy of Fuzzy set model wes 83.1% and Bayesian Predictive Discriminate Model wes 84.9%. It showed that two models are accurate and reliable and can contribute to efficient field investigation and debris landform management.

데이터융합, 앙상블과 클러스터링을 이용한 교통사고 심각도 분류분석 (Data Fusion, Ensemble and Clustering for the Severity Classification of Road Traffic Accident in Korea)

  • 손소영;이성호
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2000년도 춘계공동학술대회 논문집
    • /
    • pp.597-600
    • /
    • 2000
  • 계속적인 증가 추세를 보이고 있는 교통량으로 인해 환경 문제뿐 아니라 교통사고로 인한 사상자 및 물적피해가 상당량으로 집계되고 있다. 본 논문에서는 데이터융합 및 앙상블 클러스터링방법을 이용한 교통사고 심각도 분류분석방법을 제안함으로서 교통사고예방에 기여하고자 한다. 이를 위하여 신경망과 Decision-Tree기법을 이용하여 얻은 물적피해와 신체상해가 발생할 확률을 융합하는 전형적인 데이터 융합기법(템스터-쉐퍼, 베이지안 방법, 로지스틱융합방법)을 사용하였다. 또한, 분류정확도를 향상시키고자 Bootstrap 재추출 방법을 이용해 얻어진 여러 개의 분류예측 결과 중 다수의 분류결과를 선택하는 앙상블 (arcing, bagging)기법을 적용하였다. 더불어, 본 연구에서는 클러스터링 방법을 제시하고, 이 방법이 기존의 융합기법, 앙상블기법과 비교한 결과, 분류예측면에서 정확도가 향상됨을 보였다.

  • PDF

영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용 (Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data)

  • 임아경;오만숙
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.505-519
    • /
    • 2006
  • 셀 수 있는 이산 자료(discrete count data)에 대한 분석은 여러 분야에서 활용되고 있지만 영(zero)을 과도하게 포함하고 있는 영과잉 자료는 자료의 성격상 포아송 분포를 따르지 못할 때가 있어 분석에 어려움이 따른다. Zero-Inflated Poisson(ZIP)모형은 이런 어려움을 극복하기 위하여 영에 대한 점확률을 가지는 분포와 포아송 분포를 합성하여 과도한 영과 영이 아닌 자료를 설명하는 모형이다. 설명 변수가 존재할 때는 포아송 분포 부분에서 반응변수의 평균과 공변량사이에 로그선형 연결함수를 사용한 Zero-Inflated Poisson Regression(ZIPR)모형이 사용될 수 있다. 본 논문에서는 Markov Chain Monte Carlo 기법을 이용한 ZIPR모형의 베이지안 추론방법을 제안하고, 이를 실제 구강위생 자료에 적용하며 다른 모형들과 비교한다. 그 결과 베이지안 추론 방법을 적용한 영과잉 모형의 추정오차가 다른 모형들의 추정오차보다 작았고, 예측치가 더 정확했다는 점에서 우수함을 알 수 있었다.

군집 특정 변량효과를 포함한 유한 혼합 모형의 베이지안 분석 (Bayesian analysis of finite mixture model with cluster-specific random effects)

  • 이혜진;경민정
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.57-68
    • /
    • 2017
  • 대량의 데이터에 있어 전반적인 특성 및 구조를 파악하는데 유용하기 때문에 다양한 분야에서 군집분석을 사용하고 있다. Dempster 등 (1977)에서 정의된 expectation-maximization(EM) 알고리즘은 가장 보편적으로 사용되는 군집분석 방법이다. 선형모형의 유한혼합물(finite mixture of linear model) 기법 또한 군집분석 방법 중 많이 사용되는 방법이며 베이지안 군집방법은 Bernardo와 Giron (1988)이 군집에 대한 가중치 확률만 모를 경우 처음 적용하였다. 우리는 이 연구에서 일반적인 선형모형의 유한혼합물이 아닌 군집특정(cluster-specific) 변량효과를 모형에 포함하여 베이지안 분석방법인 깁스표집법(Gibbs sampling)을 사용한다. 제안한 모형의 특성 및 표집법에 대하여 설명하였고 모의실험 및 실제 데이터 분석을 통하여 모형의 유용성을 파악하였다. Hurn 등 (2003)의 CO2 데이터에 모형을 적용하여 변량효과가 없는 모형, 개체특정(subject-specific) 변량효과 모형과 비교하였다.

강수-온도-습도-일조량 연동 추계학적 모의기법 개발 (A Development of Simultaneous Stochastic Simulation Model for Precipitation, Temperature, Humidity and Radiation)

  • 소병진;권현한;박세훈;문영일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.386-386
    • /
    • 2011
  • 다양한 연구 분야에서 강수량, 온도, 습도, 일조량은 연구에 필요한 기후 인자로써 사용되어져 왔다. 외국의 경우 기후 인자들과의 관계를 도출해 내는 연구가 이루어 졌지만 국내의 경우는 이러한 연구가 이루어지지 않고 있다. 본 연구에서는 이러한 인자들과의 관계를 강수-온도-습도-일조량이 연동되어 모의되는 기법을 개발하고자 한다. 기존 국내외 연구결과들은 지수함수식의 형태를 가지는 모형을 이용하여 온도-일조량(radiation), 온도-습도, 습도-일조량, 온도와 강수-일조량과 습도를 개별적으로 추정하는 연구들이 있었다. 그러나 온도, 강수량, 습도, 일조량 등은 기상학적 관점에서 모두 연관성을 가지고 각 변량들에 영향을 주고 있다. 이러한 점에 착안하여 본 연구에서는 4가지 변량들이 가지는 관계를 규명하고 각 변량간의 상관관계뿐만 아니라 4가지 변량이 동시에 상관성을 갖도록 모형을 구축하고자 한다. 일반적으로 각 변량들 간의 확률적인 거동을 동시에 고려할 수 있는 Network 모형이 많이 이용된다. 본 연구에서는 Bayesian Network 모형을 활용하여 4가지 변량 간에 Bayesian Network를 구성하고, 통계적 모형으로 발전시켜 기후변화 연구에 활용하고자 한다. 제안된 방법론에 대한 적합성을 평가하기 위해, 서울지점을 대상으로 온도, 강수, 습도, 일조량 값을 이용하였다. 기후변화에 따른 수문순환모형에서 이들 4가지 변량은 기본 입력자료로 이용되고 있으나, 현재까지는 강수 및 온도를 사용한 모형 개발이 이루어지고 있다. 이러한 점에서 본 연구의 결과는 기후변화에 따른 물순환 변동성을 평가하는 기본 자료로서 활용될 수 있을 것으로 판단된다.

  • PDF

상업용 토지 가격의 베이지안 추정: 주관적 사전지식과 크리깅 기법의 활용을 중심으로 (A Bayesian Estimation of Price for Commercial Property: Using subjective priors and a kriging technique)

  • 이창로;엄영섭;박기호
    • 대한지리학회지
    • /
    • 제49권5호
    • /
    • pp.761-778
    • /
    • 2014
  • 본 논문은 거래빈도가 낮아 지금껏 적극적으로 시도되지 못한 상업용 토지의 가격을 정확히 추정하고자 하였다. 서울시 상업용 토지 실거래가 자료를 대상으로 선형 결합 형태의 평균 구조(전역적 경향), 지수 형태의 공분산함수 그리고 순수 오차항을 구성요소로 하는 모형을 구축 및 적용하였다. 상권별로 가격수준이 차별적으로 형성되는 상업용 토지 가격의 특성을 감안하여 대표적 공간보간기법인 크리깅 방법을 적용함으로써 지가의 공간적 상관성을 명시적으로 고려하였다. 더 나아가 희소한 자료의 한계를 극복하기 위해 전문가 지식을 사전 확률분포의 형태로 모형에 반영할 수 있는 베이지안 크리깅 방법을 활용하였다. 적용한 모형의 성능은 적합 과정에 사용되지 않은 검증 자료를 대상으로 검토하였으며, 전문가 지식의 반영과 공간적 상관성의 명시적 고려를 통해 가격 추정의 정확성이 높아진 사실을 확인하였다. 본 논문은 베이지안 크리깅 기법을 토지 가격 추정에 적용하되, 전문가의 주관적 지식을 명시적으로 모형에 반영하였다는 점 등에서 기존 연구와 차별성을 갖는다. 본 논문의 결과는 거래 자료가 희소한 상황에서도 신뢰성 있게 부동산 가격을 추정해야하는 경우에 유용하게 활용될 수 있을 것으로 기대된다.

  • PDF

계층적 베이지안 ARX 모형을 활용한 염분모의기법 개발 (Development of salinity simulation using a hierarchical bayesian ARX model)

  • 김호준;신충훈;김태웅;권현한
    • 한국수자원학회논문집
    • /
    • 제53권7호
    • /
    • pp.481-491
    • /
    • 2020
  • 새만금 농업단지가 조성됨에 따라 농업용수 공급이 요구되며, 농업적 측면에서 염분은 작물 재배시 생육에 영향을 미치는 항목으로 농업용수 공급시 철저한 관리가 요구된다. 따라서 농작물에 영향을 미치지 않는 농업용수 공급을 위해 염분계측을 통한 체계적인 농업용수 관리가 필요하다. 본 연구에서는 새만금호내에 관측되는 염분 시계열 자료를 모의하기 위해서 자기회귀모형을 기반으로 한 Two-Stage ARX 모형을 개발하였다. 층별로 나눠진 염분자료를 계층적 Bayesian기법을 활용하여 매개변수를 확률분포형으로 추정하였으며 염분모의의 불확실성을 제시하였다. 최적 모형을 선정하기 위해서 통계적 지표인 BIC값을 이용하였으며, 최종적으로 선정된 모형을 통해 양수장 인근 수역의 염분 모의 결과를 제시하였다.