스캐너를 이용해 스캔한 데이타는 오차를 포함하고 있으며, 이러한 오차는 통계적인 성질을 갖는 경우가 많다. 이러한 이유에서 통계적인 방법은 오차 처리를 위해 매우 효과적인 방법이며, 최근 많은 연구가 이루어지고 있다. 이러한 통계적인 방법 중 대표적인 방법인 점 추정 방법은 데이타의 여러 성질을 나타내지 못하고 단지 확률이 최대가 되는 부분의 성질만을 나타내는 한계가 있으며, 이러한 한계로 인하여 오버피팅 문제가 발생하게 된다. 이러한 한계를 극복하고 오버피팅 문제를 해결하기 위해서 본 논문에서는 변분 베이지안 방법을 이용한다. 점집합의 오차를 제거하기 위해 지역적 근사곡면을 사용하고, 높이함수를 이용해서 근사곡면을 나타낸다. 변분 베이지안 방법을 사용하여 오차가 제거된 근사곡면을 구하고, 주어진 점들을 근사곡면으로 매핑하여 오차를 제거한다. 제시된 방법은 계량적 실험과 실제 스캔된 자료를 이용한 실험을 통하여 검증된다.
베이지안개인화순위(Bayesian personalized ranking) 방법은 내재적 피드백 자료를 분석하는 최첨단 추천시스템 통계기법 중 하나이다. 하지만, 기존의 베이지안개인화순위 방법은 내재적 피드백 자료를 변환한 이진 자료만을 고려하기 때문에 정보의 손실이 있을 수 있다는 단점이 있다. 이를 해결하기 위해 본 논문에서는 내재적 피드백 자료의 수치적 크기에 기반한 확실함의 정도(level of confidence)를 고려하는 변형베이지안개인화순위 방법을 제안한다. 제안한 방법은 기존 방법처럼 상품간의 개인선호도에 관한 직관적인 확률모형 구조를 여전히 지니면서 내재적 피드백의 수치적 크기를 확실함의 정도로 반영할 수 있다는 점에서 유용하다. 또한 제안한 변형 베이지안개인화순위 방법을 수치적으로 구현하기 위해 확률그라디언트하강(stochastic gradient descent) 기법에 기반한 계산 알고리즘을 제시한다. 마지막으로, 스팀 비디오 게임 실제 데이터 분석을 통하여 기존방법에 비해 우수한 성능을 입증한다.
본 논문에서는 염해를 받는 RC 구조물의 부식 내구성을 예측하기 위한 새로운 접근 방법을 제시한다. 이 예측 방법은, 현장 계측 데이터가 추가적으로 있을 때 베이스 정리 이론에 의하여 계속적으로 업데이팅을 할 수 있다. 모델 매개변수의 확률론적인 특성은 모델로 명백하게 고려된다. 염해 해석 모델의 절차를 간단하게 하기 위해서는, 내구성 한계의 확률은 라틴 하이퍼큐브 샘플 추출법에서 얻는 표본에서 결정된다. 이러한 새로운 방법은 중요한 콘크리트 구조물을 설계하기에 아주 유용하다. 그리고 모니터링을 통한 실 콘크리트구조물의 잔존수명을 예측 할 수 있다.
The debris slope landforms which are existent in Korean mountains is generally on the steep slopes and mostly covered by vegetation, it is difficult to investigate the landform. Therefore a scientific method is required to come up with an effective field investigation plan. For this purpose, the use of Remote Sensing and GIS technologies for a spatial analysis is essential. This study has extracted the potential area of debrisslope landform formation using Fuzzy set and Bayesian Predictive Discriminate Model as mathematical data integration methods. The first step was to obtain information about debris locations and their related factors. This information was verified through field investigation and then used to build a database. In the second step, the map that zoning the study area based on the degree of debris formation possibility was generated using two modeling methods, and then cross validation technique was applied. In order to quantitatively analyze the accuracy of two modeling methods, the calculated potential rate of debrisformation within the study area was evaluated by plotting SRC(Success Rate Curve) and calculating AUC(Area Under the Curve). As a result, the prediction accuracy of Fuzzy set model wes 83.1% and Bayesian Predictive Discriminate Model wes 84.9%. It showed that two models are accurate and reliable and can contribute to efficient field investigation and debris landform management.
계속적인 증가 추세를 보이고 있는 교통량으로 인해 환경 문제뿐 아니라 교통사고로 인한 사상자 및 물적피해가 상당량으로 집계되고 있다. 본 논문에서는 데이터융합 및 앙상블 클러스터링방법을 이용한 교통사고 심각도 분류분석방법을 제안함으로서 교통사고예방에 기여하고자 한다. 이를 위하여 신경망과 Decision-Tree기법을 이용하여 얻은 물적피해와 신체상해가 발생할 확률을 융합하는 전형적인 데이터 융합기법(템스터-쉐퍼, 베이지안 방법, 로지스틱융합방법)을 사용하였다. 또한, 분류정확도를 향상시키고자 Bootstrap 재추출 방법을 이용해 얻어진 여러 개의 분류예측 결과 중 다수의 분류결과를 선택하는 앙상블 (arcing, bagging)기법을 적용하였다. 더불어, 본 연구에서는 클러스터링 방법을 제시하고, 이 방법이 기존의 융합기법, 앙상블기법과 비교한 결과, 분류예측면에서 정확도가 향상됨을 보였다.
셀 수 있는 이산 자료(discrete count data)에 대한 분석은 여러 분야에서 활용되고 있지만 영(zero)을 과도하게 포함하고 있는 영과잉 자료는 자료의 성격상 포아송 분포를 따르지 못할 때가 있어 분석에 어려움이 따른다. Zero-Inflated Poisson(ZIP)모형은 이런 어려움을 극복하기 위하여 영에 대한 점확률을 가지는 분포와 포아송 분포를 합성하여 과도한 영과 영이 아닌 자료를 설명하는 모형이다. 설명 변수가 존재할 때는 포아송 분포 부분에서 반응변수의 평균과 공변량사이에 로그선형 연결함수를 사용한 Zero-Inflated Poisson Regression(ZIPR)모형이 사용될 수 있다. 본 논문에서는 Markov Chain Monte Carlo 기법을 이용한 ZIPR모형의 베이지안 추론방법을 제안하고, 이를 실제 구강위생 자료에 적용하며 다른 모형들과 비교한다. 그 결과 베이지안 추론 방법을 적용한 영과잉 모형의 추정오차가 다른 모형들의 추정오차보다 작았고, 예측치가 더 정확했다는 점에서 우수함을 알 수 있었다.
대량의 데이터에 있어 전반적인 특성 및 구조를 파악하는데 유용하기 때문에 다양한 분야에서 군집분석을 사용하고 있다. Dempster 등 (1977)에서 정의된 expectation-maximization(EM) 알고리즘은 가장 보편적으로 사용되는 군집분석 방법이다. 선형모형의 유한혼합물(finite mixture of linear model) 기법 또한 군집분석 방법 중 많이 사용되는 방법이며 베이지안 군집방법은 Bernardo와 Giron (1988)이 군집에 대한 가중치 확률만 모를 경우 처음 적용하였다. 우리는 이 연구에서 일반적인 선형모형의 유한혼합물이 아닌 군집특정(cluster-specific) 변량효과를 모형에 포함하여 베이지안 분석방법인 깁스표집법(Gibbs sampling)을 사용한다. 제안한 모형의 특성 및 표집법에 대하여 설명하였고 모의실험 및 실제 데이터 분석을 통하여 모형의 유용성을 파악하였다. Hurn 등 (2003)의 CO2 데이터에 모형을 적용하여 변량효과가 없는 모형, 개체특정(subject-specific) 변량효과 모형과 비교하였다.
다양한 연구 분야에서 강수량, 온도, 습도, 일조량은 연구에 필요한 기후 인자로써 사용되어져 왔다. 외국의 경우 기후 인자들과의 관계를 도출해 내는 연구가 이루어 졌지만 국내의 경우는 이러한 연구가 이루어지지 않고 있다. 본 연구에서는 이러한 인자들과의 관계를 강수-온도-습도-일조량이 연동되어 모의되는 기법을 개발하고자 한다. 기존 국내외 연구결과들은 지수함수식의 형태를 가지는 모형을 이용하여 온도-일조량(radiation), 온도-습도, 습도-일조량, 온도와 강수-일조량과 습도를 개별적으로 추정하는 연구들이 있었다. 그러나 온도, 강수량, 습도, 일조량 등은 기상학적 관점에서 모두 연관성을 가지고 각 변량들에 영향을 주고 있다. 이러한 점에 착안하여 본 연구에서는 4가지 변량들이 가지는 관계를 규명하고 각 변량간의 상관관계뿐만 아니라 4가지 변량이 동시에 상관성을 갖도록 모형을 구축하고자 한다. 일반적으로 각 변량들 간의 확률적인 거동을 동시에 고려할 수 있는 Network 모형이 많이 이용된다. 본 연구에서는 Bayesian Network 모형을 활용하여 4가지 변량 간에 Bayesian Network를 구성하고, 통계적 모형으로 발전시켜 기후변화 연구에 활용하고자 한다. 제안된 방법론에 대한 적합성을 평가하기 위해, 서울지점을 대상으로 온도, 강수, 습도, 일조량 값을 이용하였다. 기후변화에 따른 수문순환모형에서 이들 4가지 변량은 기본 입력자료로 이용되고 있으나, 현재까지는 강수 및 온도를 사용한 모형 개발이 이루어지고 있다. 이러한 점에서 본 연구의 결과는 기후변화에 따른 물순환 변동성을 평가하는 기본 자료로서 활용될 수 있을 것으로 판단된다.
본 논문은 거래빈도가 낮아 지금껏 적극적으로 시도되지 못한 상업용 토지의 가격을 정확히 추정하고자 하였다. 서울시 상업용 토지 실거래가 자료를 대상으로 선형 결합 형태의 평균 구조(전역적 경향), 지수 형태의 공분산함수 그리고 순수 오차항을 구성요소로 하는 모형을 구축 및 적용하였다. 상권별로 가격수준이 차별적으로 형성되는 상업용 토지 가격의 특성을 감안하여 대표적 공간보간기법인 크리깅 방법을 적용함으로써 지가의 공간적 상관성을 명시적으로 고려하였다. 더 나아가 희소한 자료의 한계를 극복하기 위해 전문가 지식을 사전 확률분포의 형태로 모형에 반영할 수 있는 베이지안 크리깅 방법을 활용하였다. 적용한 모형의 성능은 적합 과정에 사용되지 않은 검증 자료를 대상으로 검토하였으며, 전문가 지식의 반영과 공간적 상관성의 명시적 고려를 통해 가격 추정의 정확성이 높아진 사실을 확인하였다. 본 논문은 베이지안 크리깅 기법을 토지 가격 추정에 적용하되, 전문가의 주관적 지식을 명시적으로 모형에 반영하였다는 점 등에서 기존 연구와 차별성을 갖는다. 본 논문의 결과는 거래 자료가 희소한 상황에서도 신뢰성 있게 부동산 가격을 추정해야하는 경우에 유용하게 활용될 수 있을 것으로 기대된다.
새만금 농업단지가 조성됨에 따라 농업용수 공급이 요구되며, 농업적 측면에서 염분은 작물 재배시 생육에 영향을 미치는 항목으로 농업용수 공급시 철저한 관리가 요구된다. 따라서 농작물에 영향을 미치지 않는 농업용수 공급을 위해 염분계측을 통한 체계적인 농업용수 관리가 필요하다. 본 연구에서는 새만금호내에 관측되는 염분 시계열 자료를 모의하기 위해서 자기회귀모형을 기반으로 한 Two-Stage ARX 모형을 개발하였다. 층별로 나눠진 염분자료를 계층적 Bayesian기법을 활용하여 매개변수를 확률분포형으로 추정하였으며 염분모의의 불확실성을 제시하였다. 최적 모형을 선정하기 위해서 통계적 지표인 BIC값을 이용하였으며, 최종적으로 선정된 모형을 통해 양수장 인근 수역의 염분 모의 결과를 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.