본 논문에서는 데이터 마이닝을 이용한 단기 전력 부하 예측 시스템의 새로운 설계 기법을 제안한다. 제안된 단기 부하 예측시스템은 Takagj-Sugeno (T-S) 퍼지 모델 기반 예측기와 분류기로 구성된다. 또한, 제안된 T-S 퍼지 모델 기반 분류기는 전반부 가우시안 집합과 후반부 선형화된 베이지안 분류기로 구성된다 분류기의 파라미터들은 주어진 훈련 집합의 통계적 수치로 쉽게 얻어진다. 제안된 T-S 퍼지 모델 기반 예측기는 한 가지 입력에 대한 선형 시계열 예측기의 볼록 조합 형태를 가진다. 후반부 파라미터 추정 문제는 실제 전력 부하와 예측 전력 부하의 놈(norm)을 최소화하는 볼록 최적화 문제로 간주한다. 그 문제는 선형 행렬 부등식으로 설정됨으로써 후반부 파라미터는 추정된다. 전반부 파라미터 추정문제는 선형 시계열 예측기들이 모여진 전체 T-S 퍼지 시스템의 출력과 실제 전력 부하 사이의 에러를 최소화하는 문제이다. 이 문제는 경사치 하향 기법이 적용하여 해결되었다 제안된 기법의 유용성을 검증하기 위해 본 논문은 하루 후 24시간 전력 부하 예측과 하루 후 최고 전력부하를 예측 실험을 제공한다.
최근 다양한 형태의 착용형 컴퓨터가 연구되고 있다. 본 논문에서는 사용자가 음악을 들으며 사용할 수 있는 모션헤드셋의 동작분류기 제작을 위해 머리 움직임 정보의 특징을 분석한다. 모션헤드셋 프로토타입은 스마트폰과 블루투스 통신 방법을 이용하여 음악을 수신받으며, 가속도센서가 측정한 동작정보를 스마트폰으로 전송한다. 그리고 스마트폰에서는 모션 분류기를 통해 머리의 움직임을 분류한다. 실험을 위해 프로토타입을 제작하였다. 사용자 머리의 '위', '아래', '왼쪽', 그리고 '오른쪽' 머리 움직임을 베이지안 분류기를 이용하여 분류하였다. 그 결과 '위'와 '아래'의 머리 움직임의 경우 x, z축의 가속도 센서값이 큰 변화가 있었다. 추후에 사용성 평가를 통해 동작 분류기를 제작할 수 있는 적합한 변수를 찾아 낼 계획이다.
이 논문은 프로토타입 선택 방법을 제안하고, 편의-분산 분해를 이용하여 최근접 이웃 알고리즘과 프로토타입 기반 분류 학습의 일반화 성능 비교 평가에 있다. 제안하는 프로토타입 분류기는 클래스 영역 내에서 가변 반지름을 이용한 다차원 구를 정의하고, 적은 수의 프로토타입으로 구성된 새로운 훈련 데이터 집합을 생성한다. 최근접 이웃 분류기는 새 훈련 집합을 이용하여 테스트 데이터의 클래스를 예측한다. 평균 기대 오류의 편의와 분산 요소를 분해하여 최근접 이웃 규칙, 베이지안 분류기, 고정 반지름을 이용한 프로토타입 선택 방법, 제안하는 프로토타입 선택 방법의 일반화 성능을 비교한다. 실험에서 제안하는 프로토타입 분류기의 편의-분산 변화 추세는 모든 훈련 데이터를 사용하는 최근접 이웃 알고리즘과 비슷한 편의-분산 추세를 보였으며, 프로토타입 선택 비율은 전체 데이터의 평균 약 27.0% 이하로 나타났다.
감성분석 연구에서는 문장에 내포된 감성을 결정짓는 단어를 찾는 것으로부터 시작된다. 경영자는 소비자가 주로 사용하는 단어를 분석함으로써 시장의 반응을 이해할 수 있다. 본 연구에서는 감성분류의 성능에 영향을 미치는 단어를 찾기 위하여 입자군집최적화 탐색방법과 다목적진화 알고리즘이 적용된 속성선택 방법을 제안한다. 속성선택 방법은 기존 머신러닝 분류기를 벤치마킹함으로써 성능이 비교된다. 벤치마킹된 분류기는 의사결정나무, 나이브 베이지안 네트워크, 서포터 벡터 머신, 랜덤포레스트, 배깅, 랜덤 서브스페이스, 로테이션 포레스트이다. 연구결과에 따르면, 입자군집 최적화 알고리즘이 적용된 속성선택방법으로 선택된 속성을 사용한 경우에 속성의 수를 상당히 줄일 수 있었고, 분류기의 성능을 유지시킬 수 있었다. 특히, 정확도 결과에서는 입자군집 최적화 탐색방법으로 선택된 속성을 사용한 경우의 서포터 벡터 머신의 성능이 가장 높게 나타났다. AUC 결과에서는 랜덤 서브스페이스가 가장 높게 나타났다. 본 연구의 결과는 해당 탐색방법과 분류기를 적용함으로써 오피니언 마이닝 모델의 성능을 효율적으로 유지 및 개선시키도록 도움을 준다.
영상물에 대한 학습과 분류를 위해 단순 베이지안, N-Nearest 방법 등이 사용된다. 이 방법들은 단순하면서 높은 정확도를 갖는다. 본 논문에서는 2단계 투표를 통해 이들 방법들을 조합하여 사용하였다. 유해 영상물들을 대상으로 학습 및 분류를 실험하였다. 결과로 색상분포에 따른 영상 분류가 실시간 처리 및 유해 영상 인식에 효과적임을 보였다. 또한 2단계 투표 방식의 알고리즘으로 약 2000장 이상의 사진을 가지고 학습 및 분류를 시행했으며 결과 80%에 가까운 높은 정확도와 대상 사진에 영향 받지 않는 안정도를 보였다.
SNS(Social Network Service)는 새로운 소통수단으로 인적 네트워크뿐만 아니라 사회, 문화 등에 많은 영향을 미치고 있다. 특히, 무선인터넷과 스마트폰의 보급으로 정보유통량이 기하급수적으로 증가하면서, 데이터를 처리 및 분석하는 것이 화두가 되고 있다. 본 논문에서는 급증하는 SNS 데이터를 처리 및 분석하여 의미 있는 데이터를 키워드 중심으로 추출하고자 하였다. 이를 위해 기존 데이터 처리방식이 아닌 빅데이터 처리에 적합한 MapReduce 환경에서 SNS 데이터를 필터링하고, 토픽을 예측하기 처리방법을 제시하였다. 또한, 웹 서비스를 기반으로 구현하여 분석된 데이터를 시각적으로 표현하고, 재생산하였으며, 실험을 통해 제안하는 처리방법의 성능을 검증하였다.
최근 모바일 환경의 다양한 센서 정보를 이용한 상황인지 서비스가 활발히 연구되고 있다. 본 논문에서는 모바일 및 웨어러블 센서 데이터를 사용해 다양한 맥락에서 나타날 수 있는 사용자의 식사상황을 효과적으로 인식할 수 있는 확률모델을 제안한다. 식사행위와 관련된 상황들을 체계적으로 모델링하기 위해 행위이론의 4가지 행위 요소 및 육하원칙의 5가지 구성 요소들을 모바일 및 웨어러블의 저수준 센서 데이터로 추론 가능한 범위에 맞게 통합하여 인식모델을 구축하고, 트리구조의 베이지안 네트워크 모델링 방식을 사용하여 인식의 경량화를 시도하였다. 제안하는 시스템의 유용성을 입증하기 위하여 1주일간 다양한 배경의 4명 사용자로부터 식사상황 및 일상생활에 대한 383분의 데이터를 수집하였다. 실험결과 기존의 대표적인 분류기들과 비교하여 상대적으로 우수한 인식률(93.21%)이 도출되는 것을 확인하였다. 또한 실제 시나리오를 통한 내부 분석을 수행하여 인식에 사용되는 각 요소들의 유용성을 검증하였다.
고혈압은 발병률이 꾸준히 증가하고 있을 뿐 아니라, 심혈관 질환과 같은 2차 질병의 주된 위험 요인이 되었다. 게다가 고혈압은 뇌졸중, 혈관성 치매와 같은 다른 합병증을 유발하는 질병이다. 따라서 고혈압 발병률을 예측하는 것은 중요한 일이다. 본 연구에서, 고혈압 발병률을 예측할 수 있는 노모그램을 구축하였다. 데이터는 2013년부터 2016년까지의 국민건강영양조사로부터 얻어졌다. 복합 표본의 특성을 고려하여 Rao-Scott chi-squared test를 통해 고혈압에 영향을 미치는 10가지 요인을 규명하였다. 하지만 로지스틱 회귀분석 시, 흡연 상태와, 운동 유무는 유의하지 않았다. 따라서 8개의 주 효과를 고혈압의 위험요인으로 최종 선별하였다. 그리고 최종 선별된 위험 요인들로 로지스틱 노모그램과 베이지안 노모그램을 제시 및 비교하였다. 마지막으로 ROC curve 그래프와 calibration plot을 통해 노모그램을 검증하였다.
현재 커널 기반 데이터인 시스템 호출을 이용하는 호스트 기반 침입 탐지 연구가 많이 진행되고 있다. 시스템 호출을 이용한 침입 탐지 연구는 시퀀스 기반과 빈도 기반으로 시스템 호출을 전 처리 하는 방법이 많이 사용되고 있다. 실시간 침입 탐지 시스템에 적용할 때 시스템에서 수집 되는 시스템 호출 데이터의 종류와 수집 데이터가 많아 전처리에 어려움이 많다. 그러나 비교적 시퀀스 기반 방법보다 전처리 시간이 작은 빈도 기반의 주로 방법이 사용 되고 있다. 본 논문에서는 현재에도 시스템 공격 중 비중을 많이 차지하고 있는 서비스 거부 공격을 탐지 하기위해 빈도 기반의 방법에 사용하는 전체 시스템 호출을 주성분 분석(principal component analysis)을 이용하여 주성분이 되는 시스템 호출들을 추출하여 베이지안 네트워크를 구성하고 베이지안 분류기를 통하여 탐지하는 효율적인 방법을 제안한다.
이상전파에코는 대기 관측을 위해서 사용되는 레이더 전파가 온도나 습도에 의해서 발생하는 이상굴절에 의해서 발생하는 신호로, 지상에 설치된 기상레이더에 자주 발생하는 비기상에코이다. 기상예보의 정확도를 높이기 위해서는 레이더 데이터의 정확한 분석이 필수적이기 때문에 이상전파에코의 제거에 대한 연구가 수행되어 오고 있다. 본 논문에서는 다양한 레이더 관측변수를 나이브 베이지안 분류기에 적용하여 이상전파에코를 식별하는 방법에 대한 연구를 수행하였다. 수집된 데이터가 클래스 불균형 문제를 내포하고 있는 점을 고려하여, SMOTE 기법을 이용하였다. 실제 이상전파에코 발생 사례를 통해, 제안한 방법이 성능을 표출하는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.