• 제목/요약/키워드: 베이지안 분류기

검색결과 78건 처리시간 0.026초

퍼지신경망을 사용한 네이브 베이지안 분류기의 분산 그래프 학습 (Learning Distribution Graphs Using a Neuro-Fuzzy Network for Naive Bayesian Classifier)

  • 전설위;임준식
    • 디지털융복합연구
    • /
    • 제11권11호
    • /
    • pp.409-414
    • /
    • 2013
  • Naive Bayesian classifiers 네이브 베이지안 분류기는 샘플 데이터로부터 쉽게 구현될 수 있는 강력하고도 많이 사용되는 형식의 분류기다. 그러나 강한 조건부 독립성으로 인하여 효율이 저하되는 분류 결과를 초래한다. 일반적으로 네이브 베이지안 분류기는 연속성을 가진 특징 데이터의 우도를 처리하기 위해 가우시안 분산을 사용한다. 속성들의 확률밀도는 항상 가우시안 분산에 적합한 것만은 아니다. 또 다른 형식의 분류기는 지도학습을 통해 퍼지 규칙과 퍼지집합을 학습할 수 있는 퍼지신경망이다. 퍼지신경망과 네이브 베이지안 분류기간에는 구조적 유사성을 가지고 있기 때문에 퍼지신경망으로 학습된 분산 그래프를 네이브 베이지안 분류기에 적용하고자 하는 방안이 본 연구의 목적이다. 따라서 네이브 베이지안 분류기에 가우시안 분산 그래프를 사용한 결과와 퍼지 분산 그래프를 사용한 결과를 비교하였다. 이를 위해 leukemia와 colon의 DNA 마이크로어레이 데이터를 적용하여 분류하였다. 네이브 베이지안 분류기에 퍼지 분산 그래프를 사용한 결과 가우시안 분산 그래프를 사용한 결과보다 더 신뢰성이 있음을 보여주었다.

베이지안 분류기를 이용한 신문기사 필터링 (A Study On Filtering of Newspaper Article by Using Bayesian Classifier)

  • 손기준;노태길;이상조
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.490-492
    • /
    • 2002
  • 본 논문에서는 필터링 문제를 이진 문서 분류 문제로 보고 신문기사 필터링에 베이지안 분류자를 사용한다. 신문 기사 필터링 문제에서 베이지안 분류자를 사용할 경우 학습 문서가 고정되어 있지 않기 때문에 여러 가지 파라미터를 사용하여 실험을 하였다. 실험 결과 베이지안 이진 분류기는 제한된 학습 문서에서 더 나은 성능을 보였고 해당 문서 집합에서 10%이상 비율의 문서를 사용자가 선택해야 함을 알 수 있었다.

  • PDF

베이지안 네트워크에 기반한 심전도 데이터의 정확도 향상에 관한연구 (Research on improving correctness of cardiac disorder data based on Bayesian Network)

  • 이현주;신동일;신동규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.212-214
    • /
    • 2013
  • 심전도 데이터는 일반적으로 분류기를 사용한 실험이 많으며, QRS-Complex와 R-R interval 간격을 추출하여 실험한다. 본 연구에서는 R-R interval을 추출하였다. 그리고 R-R interval 데이터와 HRV 데이터를 구성하였고, 베이지안 네트워크 분류기를 사용하여 정확도를 도출하였다. 심장관련 데이터는 심전도 뿐 아니라 심장병 데이터도 있는데 심전도 데이터와 같이 분류실험을 시행하여 정확도를 도출하였다. 그리고 베이지안 네트워크분류기의 정확도를 분석하기 위해 타 논문의 실험결과와 비교하였다. 타 논문과 본 연구의 결과를 비교해보니 베이지안 네트워크가 타 결과에 비해서 정확도 도출이 우수하였다.

베이지안 분류기를 이용한 문서 필터링 (A Study on Document Filtering Using Naive Bayesian Classifier)

  • 임수연;손기준
    • 한국콘텐츠학회논문지
    • /
    • 제5권3호
    • /
    • pp.227-235
    • /
    • 2005
  • 문서 필터링은 어떤 문서가 특정한 주제에 속하는지의 여부를 판별하는 문제이다. 인터넷과 웹이 널리 퍼지고 이메일로 전송되는 문서의 양이 폭발적으로 증가함에 따라 문서 여과의 중요성도 증가하고 있는 추세이다. 본 논문은 문서 필터링 문제를 이진 문서 분류 문제로 보고, 베이지안 분류기를 필터링 목적으로 사용하였다. 그리고 사용자가 관련성 있는 문서를 제대로 필터링 받기 위해서 학습 대상으로 삼아야 할 문서의 범위나 수, 최소한 체크해야 하는 관련성 있는 문서의 수에 대한 값을 구하는 실험을 수행하였다.

  • PDF

상황에 민감한 베이지안 분류기를 이용한 얼굴 표정 기반의 감정 인식 (Emotion Recognition Based on Facial Expression by using Context-Sensitive Bayesian Classifier)

  • 김진옥
    • 정보처리학회논문지B
    • /
    • 제13B권7호
    • /
    • pp.653-662
    • /
    • 2006
  • 사용자의 상황에 따라 적절한 서비스를 제공하는 컴퓨팅 환경을 구현하려는 유비쿼터스 컴퓨팅에서 사람과 기계간의 효과적인 상호작용과 사용자의 상황 인식을 위해 사용자의 얼굴 표정 기반의 감정 인식이 HCI의 중요한 수단으로 이용되고 있다. 본 연구는 새로운 베이지안 분류기를 이용하여 상황에 민감한 얼굴 표정에서 기본 감정을 강건하게 인식하는 문제를 다룬다. 표정에 기반한 감정 인식은 두 단계로 나뉘는데 본 연구에서는 얼굴 특징 추출 단계는 색상 히스토그램 방법을 기반으로 하고 표정을 이용한 감정 분류 단계에서는 학습과 테스트를 효과적으로 실행하는 새로운 베이지안 학습 알고리즘인 EADF(Extended Assumed-Density Filtering)을 이용한다. 상황에 민감한 베이지안 학습 알고리즘은 사용자 상황이 달라지면 복잡도가 다른 분류기를 적용할 수 있어 더 정확한 감정 인식이 가능하도록 제안되었다. 실험 결과는 표정 분류 정확도가 91% 이상이며 상황이 드러나지 않게 얼굴 표정 데이터를 모델링한 결과 10.8%의 실험 오류율을 보였다.

전자메일 자동관리 시스템을 위한 전자메일 분류기의 성능 비교 (Comparison of e-Mail Classifiers for e-Mail Response Management Systems)

  • 김국표;권영식;백찬영
    • 한국IT서비스학회:학술대회논문집
    • /
    • 한국IT서비스학회 2002년도 추계학술대회
    • /
    • pp.411-416
    • /
    • 2002
  • 인터넷의 발전과 더불어 전자메일 사용자가 증가하게 되고, 기업의 고객접촉채널로서 전자메일에 대한 중요성 또한 증가되고 있다. 고객의 요구에 대해 적시에 적절하게 응답하지 못하면 고객의 불만족이 증가하게 되고, 충성도를 감소시켜 결국 장기적 매출 및 수익성 악화를 초래하게 된다. 따라서 고객의 전자메일에 신속, 정확하게 응답할 수 있는 전자 메일 자동관리 시스템의 필요성이 증가되고 있다. 본 연구에서는 나이브 베이지안 학습과 중심점 기반 분류 방법을 이용하여 전자메일 자동관리 시스템에서 전자메일 분류를 수행하는 분류기를 구현한다. 구현된 분류기를 이용하여 실제 기업의 고객 전자메일을 분류하는 실험을 수행하고 두 분류기의 성능을 비교하였다. 실험결과 두 분류기 모두 전자메일 분류에 비교적 우수한 성능을 보였다. 그러나, 클래스 수가 적은 경우 중심점 기반 분류기가 좋은 성능을 보였으나, 학습집합이 작아지면서 두 분류기의 성능 차이는 없었으며, 클래스의 수가 많아지면서 나이브 베이지안 분류기가 더 우수한 성능을 보였다.

  • PDF

다중 레이블 나이브 베이지안 분류기의 정확도 개선 연구 (Improving Accuracy of Multi-label Naive Bayes Classifier)

  • 김해천;이재성
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제57차 동계학술대회논문집 26권1호
    • /
    • pp.147-148
    • /
    • 2018
  • 다중 레이블 분류 문제는 다중 레이블 데이터를 입력받았을 때 연관된 다수의 레이블을 추측하는 문제이다. 본 논문에서는 다중 레이블 분류 문제의 기법 중 하나인 나이브 베이지안 분류기에 레이블 의존성을 계산하여 결과에 반영한 결과 다중 레이블 분류 문제의 성능이 개선됨을 확인하였다.

  • PDF

나이브 베이지안 분류기를 이용한 선에코 탐지 방법에 대한 연구 (A Study of Line-shaped Echo Detection Method using Naive Bayesian Classifier)

  • 이한수;김성신
    • 한국지능시스템학회논문지
    • /
    • 제24권4호
    • /
    • pp.360-365
    • /
    • 2014
  • 기상 레이더, 인공위성, 라디오존데 등 날씨 예보를 수행하기 위해 많은 종류의 첨단 장비들이 사용되고 있다. 이들 중에서 지상에 설치된 기상 레이더는 넓은 탐지영역, 높은 시간 및 공간 분해능 등과 같은 많은 장점을 가지고 있기 때문에 기상예보 과정에서 필수적인 장비이다. 이러한 기상 레이더 데이터의 내부에는 기상현상 이외에도 여러 가지 외부 요인에 의해 발생하는 비기상현상이 관측되는데, 이는 기상 예보의 정확도를 감소시키는 원인이 된다. 본 논문에서는 기상 레이더 데이터를 이용한 연구를 통하여 비기상현상이 레이더에 관측되어 에코 형태로 나타난 것들 중에서 선 모양으로 발생하는 비기상에코를 제거하는 방법을 제안한다. 원시 레이더 데이터에서 선에코를 구분하여 그 특성을 추출한 후, 이들을 바탕으로 데이터 페어를 구성하여 나이브 베이지안 분류기를 학습시켰다. 그리고 학습된 나이브 베이지안 분류기를 선에코와 기상에 코가 혼재된 사례에 적용하였다. 실제 사례를 바탕으로 한 실험을 통해서 제안한 나이브 베이지안 분류기가 효과적으로 선에코를 식별할 수 있음을 확인하였다.

베이지안 망에 기초한 불임환자 임상데이터의 분석 (Bayesian Network-Based Analysis on Clinical Data of Infertility Patients)

  • 정용규;김인철
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.625-634
    • /
    • 2002
  • 본 논문에서는 베이지안 망을 기초로 불임환자의 임상 데이터에 대한 다양한 분석 실험을 전개하였다. 이 실험을 통해 임신여부에 영향을 주는 요인들간의 상호의존성을 분석해보고, 또 NBN, BAN, GBN 등 제약조건이 다른 다양한 유형의 베이지안 망 분류기들의 분류성능을 서로 비교해보았다. 그리고 우리는 이와 같은 실험을 통해 임신가능여부(Clin)에 직접적인 영향을 미치는 중요한 요인들로 증상(IND), 약물치료법(stimulation), 여성의 나이(FA), 미세조작 난자의 수(ICT), Wallace 사용여부(ETM) 등 5개의 특성들을 가려낼 수 있었고, 이 요인들간의 상호 의존성도 찾아낼 수 있었다. 또 서로 다른 유형의 베이지안 망 분류기들 중에서 요인들간의 상호의존관계를 허용하는 좀 더 일반적인 BAN과 GBN 등이 그렇지 못한 NBN에 비해 상대적으로 더 높은 분류 성능을 보여준다는 것을 확인하였다. 또 결정트리와 k-최근접 이웃과 같은 다른 분류기들과의 성능 비교를 통해, 임상 데이터의 특성상 확률적 표현과 추론에 기초한 베이지안 망 분류기들이 보다 높은 성능을 보여준다는 사실도 확인할 수 있었다. 또 본 논문에서는 클래스 노드의 Markov blanket에 속한 특성들로 특성집합을 축소하는 것을 제안하고, 실험을 통해 이 특성 축소방법이 베이지안 망 분류기들의 성능을 높여 줄 수 있는지 알아보았다.

나이브 베이지안 분류기를 이용한 게시물 자동 분류를 위한 eCRM 에이전트 시스템 (eCRM Agent System for Articles Automatic Classification System based on Naive Bayesian Classifier)

  • 최정민;이병수
    • 전기전자학회논문지
    • /
    • 제8권2호
    • /
    • pp.216-223
    • /
    • 2004
  • 최근 전자 상거래에서 사용하고 있는 게시판은 고객의 능동적인 참여로 운영되며, 게시물은 고객의 직접적인 의사를 들을 수 있는 인 바운드(Inbound)정보로서 다른 eCRM을 위한 고객 접점 채널 과는 성격이 다른 도구이다. 또한 게시판의 효과적인 운영은 게시판 자체의 신뢰도를 향상 시키고 나아가 전자 상거래 전체의 신뢰도를 높여 줄 수 있는 중요한 eCRM 도구이다. 그러나 현재 대부분의 전자상거래에서 운영하는 게시판은 기 분류된 카테고리를 고객이 직접 수동으로 선정하도록 되어 있고, 이렇게 임의로 분류되는 게시물에 대하여 체계적인 처리 과정 없이 답변이 이루어지기 때문에 답변을 하는데 많은 시간이 소요 되고 있으며, 정확한 답변이 이루어지지 않고 있는 실정이다. 따라서, 본 논문에서는 여러 가지 종류의 게시물에 대하여 나이브 베이지안 분류기를 이용하여 게시판의 기존 문제점의 해결과 효과적인 운영 그리고 게시물의 체계적인 분류 관리를 할 수 있는 게시물 자동 분류기를 설계하고 구현하였다. 아울러 문서 분류 학습 기법 중 대표적인 TFIDF. k-NN, 나이브 베이지안 기법들의 게시물 분류 성능을 측정하여 채택한 나이브 베이지안 분류기의 우수성을 확인 하였다.

  • PDF