• Title/Summary/Keyword: 베이지안네트워크

Search Result 276, Processing Time 0.026 seconds

Bayesian Inference with Fuzzy Variables for Customized High Level Context Extraction (개인화 된 High Level Context 추출을 위한 퍼지 변수의 베이지안 추론)

  • 유지오;김경중;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.115-117
    • /
    • 2004
  • 인간과 인간 사이에 컨텍스트의 역할이 중요한 것처럼 기계가 컨텍스트를 인식할 수 있는 능력을 갖추는 것은 중요하다. 특히 지능적인 서비스를 제공하기 위해서는 고수준 컨텍스트를 추출하는 것이 필요하고, 최근 베이지안 네트워크를 이용해 컨텍스트를 추출하려는 연구가 많이 있었다. 그러나 대부분은 단순한 컨텍스트를 추출하는 연구들이고, 상황이나 사용자에 따라 다른 특성을 보이는 경우에 대한 처리는 하지 못하고 있다. 본 논문은 퍼지 소속 함수를 통해 각 센서에서 오는 정보를 전 처리하고, 이를 베이지안 네트워크를 이용해 고수준 컨텍스트로 추출하는 방법을 제안한다. 특히 여러 개의 퍼지 노드가 있을 경우 퍼지 소속값의 곱을 사용하여 베이지안 추론에 적용하였다. 각 센서의 정보를 처리하는 퍼지 소속 함수는 사용자가 쉽게 설계할 수 있고, 컨텍스트 추출모듈과 별개로 설계가 가능하기 때문에 베이지안 네트워크의 유연하고 적응적인 특성을 유지하면서 개인화가 가능하다. 제안한 방법의 유용성을 보이기 위해 실제 세계의 문제를 모델링한 베이지안 네트워크의 예를 보이고 이를 분석한다.

  • PDF

A BN-based Recommendation System Reflecting User's Preference in Mobile Devices (모바일 장비에서 사용자의 선호도를 반영한 베이지안 네트워크 기반 추천 시스템)

  • Park, Moon-Hee;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.277-280
    • /
    • 2007
  • 무선통신의 발달에 따라 모바일 장비 기반의 이동성을 고려한 서비스에 관한 연구가 활발하다. 모바일 장비는 제한된 화면크기, 부족한 리소스 등의 한계와 함께 사용자의 이동 중에 발생하는 이벤트를 처리해야 한다는 문제가 있기 때문에, 사용자에게 친숙한 인터페이스와 개별화된 추천 서비스가 요구된다. 본 논문에서는 사용자의 선호도를 반영한 베이지안 네트워크를 이용하여 모바일 장비에서 개인화된 추천 시스템을 개발한다. 실시간으로 변화하는 환경에 적응하도록 네트워크를 설계하기 위하여 전문가에 의해 구조를 설계하고, 수집된 사용자 로그를 바탕으로 파라메터를 학습하여 베이지안 네트워크 모델을 생성한 후, 학습된 모델 기반의 추론결과를 실제 컨텐츠와 비교하여 시스템에 매핑시킴으로써 사용자에게 추천한다. 실제 신촌지역 음식점 추천을 대상으로 실험한 결과, 그 가능성을 확인할 수 있었다.

  • PDF

Learning Predictive Models of Memory Landmarks based on Attributed Bayesian Networks Using Mobile Context Log (모바일 컨텍스트 로그를 사용한 속성별 베이지안 네트워크 기반의 랜드마크 예측 모델 학습)

  • Lee, Byung-Gil;Lim, Sung-Soo;Cho, Sung-Bae
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.4
    • /
    • pp.535-554
    • /
    • 2009
  • Information collected on mobile devices might be utilized to support user's memory, but it is difficult to effectively retrieve them because of the enormous amount of information. In order to organize information as an episodic approach that mimics human memory for the effective search, it is required to detect important event like landmarks. For providing new services with users, in this paper, we propose the prediction model to find landmarks automatically from various context log information based on attributed Bayesian networks. The data are divided into daily and weekly ones, and are categorized into attributes according to the source, to learn the Bayesian networks for the improvement of landmark prediction. The experiments on the Nokia log data showed that the Bayesian method outperforms SVMs, and the proposed attributed Bayesian networks are superior to the Bayesian networks modelled daily and weekly.

  • PDF

Context-aware application for smart home based on Bayesian network (베이지안 네트워크에 기반한 스마트 홈에서의 상황인식 기법개발)

  • Chung, Woo-Yong;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.179-184
    • /
    • 2007
  • This paper deals with a context-aware application based on Bayesian network in the smart home. Bayesian network is a powerful graphical tool for learning casual dependencies between various context events and obtaining probability distributions. So we can recognize the resident's activities and home environment based on it. However as the sensors become various, learning the structure become difficult. We construct Bayesian network simple and efficient way with mutual information and evaluated the method in the virtual smart home.

Network Identification of Major Risk Factor Associated with Delirium by Bayesian Network (베이지안 네트워크를 활용한 정신장애 질병 섬망(delirium)의 주요 요인 네트워크 규명)

  • Lee, Jea-Young;Choi, Young-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.323-333
    • /
    • 2011
  • We analyzed using logistic to find factors with a mental disorder because logistic is the most efficient way assess risk factors. In this paper, we applied data mining techniques that are logistic, neural network, c5.0, cart and Bayesian network to delirium data. The Bayesian network method was chosen as the best model. When delirium data were applied to the Bayesian network, we determined the risk factors associated with delirium as well as identified the network between the risk factors.

Speciated evolution of Bayesian networks ensembles for robust inference (안정된 추론을 위한 베이지안 네트워크 앙상블의 종분화 진화)

  • 유지오;김경중;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.226-228
    • /
    • 2004
  • 베이지안 네트워크는 불확실한 상황을 모델링하기 위한 확률 기반의 모델이다. 베이지안 네트워크의 구조를 자동 학습하기 위한 연구가 많이 있었고, 최근에는 진화 알고리즘을 이용한 연구가 많이 진행되고 있다. 그러나 대부분은 마지막 세대의 가장 좋은 개체만을 이용하고 있다. 시스템이 요구하는 다양한 요구조건을 하나의 적합도 평가 수식으로 나타내기 어렵기 때문에, 마지막 세대의 가장 좋은 개체는 종종 편향되거나 변화하는 환경에 덜 적응적일 수 있다. 본 논문에서는 적합도 공유 방법으로 다양한 베이지안 네트워크를 생성하고, 이를 베이즈 규칙을 통해 결합하여 변화하는 환경에 적응적인 추론 모델을 구축할 수 있는 방법을 제안한다. 성능 평가를 위해 ALARM 네트워크에서 인공적으로 생성한 데이터를 이용한 구조 학습 및 추론 실험을 수행하였다. 다양한 조건에서 학습된 네트워크를 실험한 결과, 제안한 방법이 변화하는 환경에서 더욱 강건하고 적응적인 모델을 생성할 수 있음을 확인한 수 있었다.

  • PDF

Activity Recognition based on Multi-modal Sensors using Dynamic Bayesian Networks (동적 베이지안 네트워크를 이용한 델티모달센서기반 사용자 행동인식)

  • Yang, Sung-Ihk;Hong, Jin-Hyuk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.1
    • /
    • pp.72-76
    • /
    • 2009
  • Recently, as the interest of ubiquitous computing has been increased there has been lots of research about recognizing human activities to provide services in this environment. Especially, in mobile environment, contrary to the conventional vision based recognition researches, lots of researches are sensor based recognition. In this paper we propose to recognize the user's activity with multi-modal sensors using hierarchical dynamic Bayesian networks. Dynamic Bayesian networks are trained by the OVR(One-Versus-Rest) strategy. The inferring part of this network uses less calculation cost by selecting the activity with the higher percentage of the result of a simpler Bayesian network. For the experiment, we used an accelerometer and a physiological sensor recognizing eight kinds of activities, and as a result of the experiment we gain 97.4% of accuracy recognizing the user's activity.

The study of Efficient Learning Method for Bayesian Network (베이지안 네트워크에서의 효율적인 탐색 기법에 관한 연구)

  • Hwang Sung-Chul;Lee Yill-Byung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.241-243
    • /
    • 2006
  • 불확실성이 존재하는 대용량의 데이터에서의 추론과 각 특성들 간의 상관관계를 파악하기 위해서 사용되는 기법이 베이지안 네트워크 학습 방법이다. 본 논문에서는 베이지안 네트워크 학습 방법에서 발생할 수 있는 NP-Hard문제를 해결하게 위한 효율적인 탐색 기법을 구현하여 실제 네트워크 학습에서 적용시키고, 어떻게 개선되는지 알아본다.

  • PDF

Online Learning for Bayesian Network Parameters from Incomplete Data (불완전한 데이터로부터 베이지안 네트워크 파라메터의 온라인 학습)

  • Lim Sungsoo;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.652-654
    • /
    • 2005
  • 베이지안 네트워크의 파라메터 학습은 주어진 평가 척도에 따라 데이터의 훈련집합에 가장 잘 부합되는 네트워크 파라메터를 구하는 것으로, 베이지안 네트워크 설계에 드는 시간과 노력을 줄이기 위해 연구되어 왔다. 본 논문에서는 불완전한 데이터로부터 온라인으로 베이지안 네트워크의 파라메터를 학습하는 방법을 제안한다. 제안하는 방법은 불완전한 데이터로부터 학습이 가능하도록 하여 학습의 유연성을 높이고, 온라인 학습을 통해 사용자 또는 환경의 변화를 잘 모델링한다. Choen 등이 제안한 온라인 파라메터 학습 방법인 Voting EM 알고리즘과 비교 실험 결과, 제안하는 방법의 유용성을 확인할 수 있었다.

  • PDF

The effect investigation of the delirium by Bayesian network and radial graph (베이지안 네트워크와 방사형 그래프를 이용한 섬망의 효과 규명)

  • Lee, Jea-Young;Bae, Jae-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.911-919
    • /
    • 2011
  • In recent medical analysis, it becomes more important to looking for risk factors related to mental illness. If we find and identify their relevant characteristics of the risk factors, the disease can be prevented in advance. Moreover, the study can be helpful to medical development. These kinds of studies of risk factors for mental illness have mainly been discussed by using the logistic regression model. However in this paper, data mining techniques such as CART, C5.0, logistic, neural networks and Bayesian network were used to search for the risk factors. The Bayesian network of the above data mining methods was selected as most optimal model by applying delirium data. Then, Bayesian network analysis was used to find risk factors and the relationship between the risk factors are identified through a radial graph.