• 제목/요약/키워드: 베어링 결함 진단

검색결과 49건 처리시간 0.024초

탈황 흡수탑 유도전동기 베어링 결함 진단을 위한 전류 스펙트럼 해석 (Analysis of Motor-Current Spectrum for Fault Diagnosis of Induction Motor Bearing in Desulfurization Absorber)

  • 박정현;문승재
    • 플랜트 저널
    • /
    • 제11권2호
    • /
    • pp.39-44
    • /
    • 2015
  • 본 연구는 석탄화력 탈황설비인 흡수탑 교반기용 유도전동기의 베어링 결함진단을 토대로 전류 스펙트럼 해석이 예측정비 수단으로서 활용할 수 있는지를 논하고자 하였다. 베어링의 교체 전과 후의 전류스펙트럼 해석을 하고 베어링을 육안 점검하여 비교 분석함으로써 실제 발전 산업현장에서 부하운전중인 유도전동기의 베어링의 결함진단을 하였다. 분석 결과, 볼과 외륜의 베어링 결함에 해당하는 주파수성분이 예측한 값으로 검출되었고 전압기준의 진폭크기로 환산하여 베어링 교체하기 전과 후를 비교하면 결함이 진행될 경우 볼 결함에서는 약 2.9배 증가되고 외륜 결함에서는 약 2.24배 증가 되었음을 확인할 수 있었다. 이 같은 결론으로 인위적인 고장요소에 의한 베어링 결함진단 뿐만 아니라 산업현장에서 부하 운전되고 있는 유도전동기의 베어링 결함을 사전에 예측하는데 있어서도 매우 유용하였다.

  • PDF

저속회전베어링의 전동면 이상진단에 관한 연구 -웨이브렛과 패턴인식법의 적용-

  • 김태구
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2002년도 춘계 학술논문발표회 논문집
    • /
    • pp.413-418
    • /
    • 2002
  • 베어링은 산업현장에서 널리 쓰여지는 중요 부품이다. 따라서 이의 결함에 따른 손실을 예방하기 위해서는 이상을 진단하고 검지하는 기법이 요구된다. 따라서 본 연구에서는 저속회전하므로 노이즈가 많이 포함되어 절상상태의 신호검출이 어려운 저속회전베어링의 외륜이상을 웨이브렛의 Denoising 기법을 적용하여 정량적으로 진단하고 패턴인식법 중의 하나인 KDI(Kullback Discrimination Information)를 적용하여 이상상태의 진단/검지능력을 시험해 보았다. 웨이브랫의 Denoising 기법은 노이즈 캔셀링(Noise canceling)이 능력이 뛰어났고, HDI기법은 저속회전베어링의 정상과 이상의 분류에 뛰어난 검지능력이 있음을 알 수 있었다.(중략)

  • PDF

저속 구름 베어링의 다중 결함 조기 검출 (Early Multiple Fault Identification of Low-Speed Rolling Element Bearings)

  • 강현준;정인규;강명수;김종면
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.749-752
    • /
    • 2014
  • 본 논문에서는 저속으로 동작하는 구름 베어링의 다중 결함 조기 검출을 위해 결함 특징 추출, 효과적인 특징 선택, 선택된 특징을 이용한 결함 분류의 세 단계로 구성된 결함 진단 기법을 제안한다. 1단계에서 이산 웨이블릿 변환을 이용하여 미세성분으로부터 통계적 결함 특징을 추출하고, DET(distance evaluation technique)를 이용하여 추출한 결함 특징 가운데 베어링 다중 결함 검출에 효과적인 특징을 선택한다. 마지막으로 선택된 특징을 k-NN(k-Nearest Neighbors) 분류기 입력으로 사용함으로써 결함을 진단한다. 본 논문에서는 제안한 결함 진단 기법의 성능을 분류 정확도 측면에서 평가한 결과 95.14%의 높은 분류 정확도를 보였다.

마모 단계의 볼 베어링에 대한 적외선 열화상 비파괴 결함 진단 연구 (Study on NDT Fault Diagnosis of the Ball Bearing under Stage of Abrasion by Infrared Thermography)

  • 서진주;홍동표;김원태
    • 비파괴검사학회지
    • /
    • 제32권1호
    • /
    • pp.7-11
    • /
    • 2012
  • 기존 진단법과 달리 동적 하중조건하 회전체의 마모 단계에 따른 결함 진단을 위해 비접촉, 비파괴의 적외선 열화상 기법이 제안된다. 본 연구에서는 시험시편인 단열 깊은 홈의 볼 베어링을 설정하여 기존의 스펙트럼 분석과 같은 고장탐지법에 대한 대안으로써 수동형 열화상시험이 수행되었다. 본 연구로부터, 적외선 열화상시험은 신뢰성을 평가하기 위해 기존 진동 스펙트럼 분석시험과 비교, 분석되었다. 연구의 비파괴시험의 결과로써, 마모 단계에 따른 볼 베어링의 온도 특성이 분석되었다.

Bispectrum 해석법을 이용한 회전기기 이상진단에 관한 연구 (A Study of Rotating Machine Using Bispetrum Analysis Method)

  • 이정철;정준회;오재응
    • 한국통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.581-601
    • /
    • 1990
  • 회전기기 이상진단을 해석하는 방법으로 최근까지 여러가지 방법이 제시되고 있다. 본 논문에서는 고차 스펙트럼의 일종인 Bispectrum해석법을 이용하여, 회전기기 요소중의 하나인 베어링의 결함을 진단하는 기법으로서 그 타당성을 검증하고 Bispectrum 해석법의 물리적인 의미를 파악하고자 컴퓨터 시뮬레이션을 행하였다. 컴퓨터 시뮬레이션과 실제의 베어링 결함신호에 대한 결과를 고찰하였으며, 종래의 Power Spectrum보다 베어링 이상진단에 유효함을 알 수 있었다.

  • PDF

MFCCs를 이용한 입력 변환과 CNN 학습에 기반한 운영 환경 변화에 강건한 베어링 결함 진단 방법 (An Input Transformation with MFCCs and CNN Learning Based Robust Bearing Fault Diagnosis Method for Various Working Conditions)

  • 서양진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권4호
    • /
    • pp.179-188
    • /
    • 2022
  • 기계의 주요 부품인 베어링 결함 진단에 딥러닝을 활용하는 연구가 활발하게 진행되어 좋은 성능을 달성하였으나, 학습 데이터와 테스트 데이터의 운영 환경 차이로 인해 기계가 실제로 가동되는 환경에서는 성능 저하가 발생하는 문제가 있다. 학습 데이터와 테스트 데이터의 분포 차이 문제를 다루는 방법으로 데이터 적응이 제안되어 좋은 결과를 보여주고 있으나, 각 방법이 가정하고 있는 특정 적용 시나리오를 벗어나기 어렵다는 제약이 있다. 이에 본 연구는 MFCCs를 이용한 입력 데이터의 변환과 간단한 CNN 구조를 이용해 원시 도메인 데이터로부터 생성된 모델에 대해 추가적인 학습이나 조정 없이 타겟 도메인 데이터에 대한 테스트를 강건하게 수행하는 방법을 제안하였으며, 대표적인 베어링 결함 진단 데이터셋인 CWRU 베어링 데이터를 이용해 제안한 방법에 대한 실험 및 분석을 수행하였다. 실험 결과 전이 학습 기반의 방법들과 대등한 성능을 보였으며, 입력 변환 기반의 베이스라인 방법보다는 최소 15% 정도의 높은 성능을 달성하였다.

미세 이물질이 혼입된 볼베어링의 고장 진단을 위한 정량화 열화상에 관한 비파괴평가 연구 (Quantitative NDE Thermography for Fault Diagnosis of Ball Bearings with Micro-Foreign Substances)

  • 홍동표;김원태
    • 비파괴검사학회지
    • /
    • 제34권4호
    • /
    • pp.305-310
    • /
    • 2014
  • 본 고에서는 미세 이물질이 삽입된 볼베어링에 대하여 비파괴평가를 제안하였다. 비파괴평가 연구로서 동적인 하중조건하 회전체의 동작에 따른 고장 진단을 위해 비접촉식 정량화된 적외선 열화상 기법을 적용하였다. 이로부터 볼베어링에 대한 적정 체결조건을 설정하였고 고장 상태감시에 대한 수동형 열화상시험을 수행하였다. 본 연구로부터, 적외선 열화상 시험은 조기의 결함 진단을 평가하기 위해 정상 및 이물질이 삽입된 시편들로부터의 온도 프로파일링을 비교, 분석되었다. 연구의 비파괴검사 평가의 결과로써, 고장에 이르는 이상단계에 따른 볼베어링의 온도 특성이 정량적으로 분석되었다.

차량용 휠 베어링의 결함 예측을 위한 센서 모듈 및 진단 연구 (A Study on Sensor Module and Diagnosis of Automobile Wheel Bearing Failure Prediction)

  • 황재용;설예인
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.47-53
    • /
    • 2020
  • 최근 모니터링 및 예측 시스템을 이용하여 사전에 결함을 발견하고 이를 경고하는 시스템이 활발히 연구되고 있다. 차량 안전 관리에 있어서도 예측 결함 분석 기술을 적용하여 자동차 휠 베어링의 고장 유무 및 고장 유형을 조기에 경고하는 시스템이 필요하다. 본 논문에서는 휠 베어링과 결합 된 센서 모듈과 각 센서 모듈에서 차량 가속 정보 및 진동 정보를 수집, 저장 및 분석하는 진단 시스템을 제시하였다. 제안된 센서 모듈은 저비용으로 차량의 휠 베어링 상태를 모니터링하며, 이렇게 수집된 데이터를 활용하여 진단 및 고장 예측 기능을 수행하는 방안을 연구하였다. 개발된 센서 모듈과 예측 분석 시스템은 가진 테스트 장비 및 실제 차량을 이용하여 테스트하고 그 유효성을 평가하였다.

롤러 베어링에서의 결함의 자동진단 (Automatic Diagnosis of Defects in Roller Element Bearings)

  • 유정훈;윤종호;김성걸;이장무
    • 소음진동
    • /
    • 제5권3호
    • /
    • pp.353-360
    • /
    • 1995
  • A new automatic diagnostic system for predicting multiple defects in rolling element bearings is developed by taking probbability into account. A database is constructed from the frequency characteristics of tested bearings with various types of defects. The proposed algorithms for the automatic diagnosis of bearing defects are shown to be satisfactory through the experiments. This method can be effectively used for quality control of the rolling bearing in plants.

  • PDF

전산 열해석 및 적외선 열화상을 이용한 볼베어링의 동적 하중에 따른 진단 계측에 관한 연구 (On Diagnosis Measurement under Dynamic Loading of Ball Bearing using Numerical Thermal Analysis and Infrared Thermography)

  • 홍동표;김호종;김원태
    • 비파괴검사학회지
    • /
    • 제33권4호
    • /
    • pp.355-360
    • /
    • 2013
  • 본 연구에서는 적외선 열화상 카메라를 통하여 베어링의 온도변화를 분석하고, FEM 수치해석을 통하여 모델러에 대한 정상상태에서의 시뮬레이션을 통해 베어링의 열적분포를 해석하였다. 전산 열해석을 위한 유한요소 해석과 열화상 실험을 서로 비교분석하였고 유한요소 전산해석을 통하여 열화상 실험의 정확도를 확인하였다. 본 연구를 통하여 적외선 열화상 실험은 실시간으로 베어링의 상태를 감시할 수 있어 다른 진단방식보다 많은 장점을 가지고 있다. 또한 작업 현장에서 베어링 파손 상태 유무 확인과 파손 방지를 위해서 현장 작업조건을 적용한 유한요소 해석 결과를 비롯하여, 하중조건 회전속도조건, 볼 손상조건, 내외륜 손상조건 등에 따라, 열화상 카메라로 실시간으로 베어링을 감시하면 베어링의 파손을 진단 검출할 수 있다.