• 제목/요약/키워드: 베르누이-오일러 굽힘모멘트

검색결과 4건 처리시간 0.019초

인공근육에 적용되는 압전복합재료 작동기의 탄소섬유 배향각과 작동변위의 관계 (Relationship Between CFRP Ply Orientation and Performance Stroke in Piezoelectric Zirconate Titanate Composite Actuator(PZTCA) of Artificial Muscle)

  • 김철웅;이성혁;윤광준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.641-644
    • /
    • 2005
  • The aim of this research is to evaluate the relationship between the total effective moment $(M^E)$ and Bemoulli-Euler bending moment (M) when the ply orientations of UD CFRP in Piezoelectric Zirconate Titanate Composite Actuator (PZTCA) are changed. The obtained results as follows. Firstly, as the performance test results by the CFRP ply orientation, the performance of [0] and [90] were stable. However, while the performance of [+45] was suddenly decreased after 5 hours. Secondly, the change of $M^E$ by the CFRP ply orientation was evaluated. As the CFRP ply orientation was increased from [0] to [+60], the $M^E$ were gradually decreased. However, they became a little bit increased from [+60] to [90]. Finally, after the change of M by the CFRP ply orientation was evaluated, it was found that $M^E=2.2M$ was valid for just [0] and that there was a relationship between $M^E$ and M according to the ply orientation.

  • PDF

경량압전 복합재료 작동기의 작동범위를 이용한 총유효 모멘트 (ME)의 예측 (Prediction of the Total Effective Moment (ME) Using Stroke Range in Lightweight Piezoelectric Composite Actuator(LIPCA))

  • 윤광준;김철웅
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.120-127
    • /
    • 2006
  • The fatigue behavior of LIPCA was so sensitive to the manufacturing condition, the environmental factors and the change of the test apparatus. Therefore, we could be considering not only the relationship between the stroke range $({\Delta}h)$ and actuating frequency but also the relationship between the stroke range $({\Delta}h)$ and the total effective moment $(M^E)$. Thus, this study proposed the calculation method of the applying $M^E$ when the $({\Delta}h)$ of LIPCA was increased from 1.mm to 20mm. To estimate the relationship between the total effective moment $(M^E)$ and the Bernoulli-Euler bending moment (M) was reviewed. And the residual stress distribution of LIPCA and THUNDER using the CLT was evaluated. In conclusions, converting the $({\Delta}h)$ of LIPCA to the radius of curvature (p) and calculating the $(M^E)$, it was found that the p by the $M^E$ changed similarly as the $({\Delta}h)$. It was found that the $M^E$ was 2.2 times as the M. While CFRP and PZT of LIPCA, which had the superior compressive characteristic, had the compressive residual stress, GFRP was subject to the tensile residual stress. Since this reversed configuration between the compressive residuals stress and the tensile one was made, the requirement of the stroke range $({\Delta}h)$ increase was satisfied.

CFRP 배향각에 따라 변화하는 PZTCA의 작동변위(Δ h)와 곡률반경(ρ)의 관계식 제안 (Proposal of Equation on Changable Performance Stroke (Δ h) and Radius of Curvature (ρ) According to the CERP Ply Orientation in PZTCA)

  • 홍정화;윤광준;김철웅
    • 대한기계학회논문집A
    • /
    • 제30권3호
    • /
    • pp.318-327
    • /
    • 2006
  • Due to the diversified use of recent Piezoelectric Zirconate Titanate Composite Actuate. (PZTCA), various PZTCAs with the different ply orientation of the fiber layer have been applied. For this reason, the applicable bending moment equation is necessary even though the fiber layer ply orientation and the laminate configuration are changed. The aim of this research is to evaluate the relationship between the total effective moment $(M^E)$ and Bernoulli-Euler bending moment (M) when the ply orientations of UD CFRP are changed. In conclusions, firstly, as the performance test results by the CFRP ply orientation, the performance of [0] and [90] were stable. However, while the performance of [+45] was suddenly decreased after 5 hours. Secondly, the change of $(M^E)$ by the CFRP ply orientation was evaluated. As the CFRP ply orientation was increased from [0] to [+60], the $(M^E)$ were gradually decreased. However, they became a little bit increased from [+60] to [90]. Finally, after the change of M by the CFRP ply orientation was evaluated, it was found that $M^E=2.2M$ was valid for just [0] and that there was a relationship between $M^E$ and M according to the ply orientation.