• Title/Summary/Keyword: 범용유한요소 프로그램 앤시스

Search Result 2, Processing Time 0.015 seconds

Prediction of Penetration and Heat Affected Zone by Using Finite Element Method in $CO_2$ Arc Welding (유한 요소법을 이용한 $CO_2$아아크 용접부의 용입깊이와 열영향부 크기 예측)

  • 이정익;박일철;박기영;엄기원
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.222-229
    • /
    • 1992
  • A prediction of penetration and heat affected zone by using Finite Element Method in CO$_{2}$ Arc Welding has been discussed this paper. The temperature distribution of a base metal produced by the CO$_{2}$ arc welding processing is analyzed by using a three dimensional finite element model. The common finite element program ANSYS 4.4A was employed to obtain the numerical results. Temperature dependent material properties, effect of latent heat, and the convective boundary conditions are included in the model. Numerically predicted sizes of the penetration and the heat affected zone are compared with the experimentally observed values. As a result, there was a slight difference between numerical analysis values and experimentally observed values. For in the case of heat affected zone, it was not considered a precise forced convective coefficient value, and in the case of penetration, it was not, considered a arc force.

  • PDF

A Study on GUI Development of Structural Analysis of LNG Pump Tower (LNG 운반선용 펌프타워의 구조해석 GUI개발에 관한 연구)

  • Lee, Kang-Su;Son, Choong-Yul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.605-613
    • /
    • 2007
  • The purpose of this study is to develop a structural analysis system of LNG pump tower structure. The system affords to build optimized finite element model and procedure of the pump tower structure. The pump tower structure is one of the most important components of LNG (liquefied natural gas) carriers. The pump tower structure is subject to sloshing load of LNG induced by ship motion depending on filling ratio. Three typer of loading components, which are thermal, inertia and self-gravity are considered in the analysis. The finite element analysis is performed with ANSYS commercial code. The failure of each members can be evaluated of API unity and punching shear in ABS rule. The GUI is newly developed using Tcl/tk script language. All these design and analysis procedures are embedded in to the analysis system successfully.