• Title/Summary/Keyword: 범밀도함수법

Search Result 10, Processing Time 0.01 seconds

Electronic Structure Calculations of Cubane-type Cu4 Magnetic Molecule (Cubane 구조를 가진 Cu4 분자자성체의 전자구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.119-123
    • /
    • 2016
  • We have studied electronic and magnetic structure of cubane-type Cu magnetic molecule using density functional method. The calculated density of states show that Cu has 3d $x^2-y^2$ hole orbital because of short distances between Cu atom and in-plane 4 ligand atoms. The calculated total energy with in-plane antiferromagnetic spin configuration is lower than those of ferromagnetic configurations. The calculated exchange interaction J between in-plane Cu atoms is much larger than those between out-plane Cu atoms, since the $x^2-y^2$ hole orbital ordering of Cu 3d orbitals induces strong super-exchange interaction between in-plane Cu atoms.

Electronic and Magnetic Structure Calculations of Mn-dimer Molecular Magnet (Mn-dimer 분자자성체의 전자구조 및 자기구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.4
    • /
    • pp.97-100
    • /
    • 2014
  • We have studied electronic and magnetic structure of Mn-dimer molecule using OpenMX method based on density functional method. The calculated density of states shows that the four O atoms split $e_g$ and $t_{2g}$ energy levels. The energy splitting by the crystal field is smaller than bulk MnO with cubic structure, because of small coordination number of atoms. Total energy with antiferromagnetic spin configuration is lower than that of ferromagnetic configurations. Calculated exchange interaction J between Mn atoms is one order larger than that of the other Mn-O magnetic molecules. That comes from the direct exchange interaction between Mn 3d orbitals and the super-exchange interactions caused by strong ${\sigma}$-bonding of Mn-O orbitals.

Electronic and Magnetic Structure Calculations of Cubane-type Co4 Magnetic Molecule (Cubane 구조를 가진 Co4 분자자성체의 전자구조 및 자기구조계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.140-144
    • /
    • 2017
  • We have studied electronic and magnetic structure of cubane-type Co magnetic molecule using density functional method. The calculated density of states show $Co^{+2}$ ionic state and high-spin state because of large exchange interaction between inside Co 3d electrons. The exchange interaction J between Co atoms depends Co-O-Co angle. The calculated J is ferromagnetic with right angles. On the other hand J is antiferromagnetic with large angles since super-exchange interactions between $Co^{+2}$ atoms. It induces that Co cubane has a antiferromagnetic spin structure of AFM1 = [${\uparrow}{\uparrow}{\downarrow}{\downarrow}$]

Electronic and Magnetic Structure Calculations of Cubane-type Mn4 Cluster (Cubane-type Mn4 클러스터의 전자구조 및 자기구조 계산)

  • Park, Key-Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.4
    • /
    • pp.121-124
    • /
    • 2012
  • We have studied electronic and magnetic structure of cubane-type Mn4 cluster using OpenMX method based on density functional method. The calculated density of states shows that the octahedron of O atoms split $e_g$ and $t_{2g}$ energy levels like bulk MnO with cubic structure. Total energy with antiferromagnetic spin configuration is lower than those of other spin configurations because of super exchange interaction. Calculated exchange interaction J between Mn atoms with anti-parallel spin is larger than between Mn atoms with parallel spin.

Electronic and Magnetic Structure Calculations of Diiron Enzymes (이중 철 효소의 전자구조 및 자기구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.106-110
    • /
    • 2015
  • We have studied electronic and magnetic structure of 2 kinds of diiron molecules using OpenMX method based on density functional method. The calculated density of states of diiron-2 is similar with that of diiron-4 because of equal number of 6 ligand atoms. The calculated total energy with antiferromagnetic spin configuration is lower than those of ferromagnetic configurations for both of them. The exchange interaction J of diiiron-4 between $Fe^{+3}$ atoms is one order larger than that of diiron-2, and the calculated J matches well with the experimental one. That comes from the short distance of Fe-O and the high O 2p energy levels. It derives a strong super exchange interaction. The angle of diiron-4 between Fe atoms is bigger than that of diiron-2. It also derives a strong super exchange interaction because of the ${\sigma}$-bond between Fe and O atoms.

The Electronic Structure Calculations for Transition Metal Substituted Ge Chain Clusters (자성 원자를 치환한 1차원 클러스터의 전자구조 및 자성구조 계산)

  • Park, Key-Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.157-160
    • /
    • 2009
  • We have studied electronic structures and magnetic properties of one dimensional Ge chain nanoclusters using OpenMX method based on densty functional method. The calculation results show the strong antiferromagnetic interaction between Cr and Ge atoms. The magnetic interaction between Ge and Ge atoms are almost antiferromagnetic behaviors. The magnetic exchange interaction are occurred over the sevaral Ge atom layers. The magnitude of this interaction depends number of Ge atom.

The Magnetic Structure and Magnetic Anisotropy Energy Calculations for Transition Metal Mono-oxide Clusters (전이금속산화물 클러스터의 자기구조 및 자기이방성에너지 계산)

  • Park, Key-Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • We have studied magnetic structure and magnetic anisotropy energy of cubic transition metal mono-oxide cluster FeO and MnO using OpenMX method based on density functional method. The calculation results show that the antiferromagnetic spin arrangement has the lowest energy for FeO and MnO due to the superexchange interactions. The magnetic anisotropy is only found for antiferromagnetically ordered FeO cluster, since occupied electron of 3d down-spin level induces the spin-orbit couplings with <111> directed angular momentum.

Electronic State of ZnO Doped with Elements of IIIB family, Calculated by Density functional Theory (범밀도함수법을 이용하여 계산한 IIIB족 원소가 도핑된 ZnO의 전자상태)

  • Lee, Dong-Yoon;Lee, Won-Jae;Min, Bok-Ki;Kim, In-Sung;Song, Jae-Sung;Kim, Yang-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.589-593
    • /
    • 2005
  • The electronic states of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, were calculated using the density functional theory. In this study, the calculation was performed by two Programs; the discrete variational Xa (DV-Xa) method, which is a sort of molecular orbital full potential method; Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The fundamental mixed orbital structure in each energy level near the Fermi level was investigated with simple model using DV-Xa. The optimized crystal structures calculated by VASP were compared to the measured structures. The density of state and the energy levels of dopant elements were shown and discussed in association with properties.