• 제목/요약/키워드: 벌군집 알고리즘

검색결과 4건 처리시간 0.016초

SDN 환경에서 Apriori 알고리즘 기반의 향상된 인공벌 군집(ABC) 알고리즘을 이용한 컨트롤러 선택 (Selection of controller using improved Artificial Bee Colony algorithm based on Apriori algorithm in SDN environment)

  • 유승언;임환희;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.39-40
    • /
    • 2019
  • 본 논문에서는 연관규칙 마이닝 알고리즘인 Apriori 알고리즘을 기반으로 향상된 인공벌 군집 알고리즘(ABC algorihtm)을 적용하여 SDN 환경에서 분산된 컨트롤러를 선택하는 모델을 제안하였다. 이를 통해 자주 사용되는 컨트롤러를 우선적으로 선택함으로써 향상된 컨트롤러 선택을 목표로 한다.

  • PDF

SDN 분산 컨트롤러에서 일관성 문제 해결을 위한 향상된 인공벌 군집(ABC) 알고리즘 (Improved Artificial Bee Clustering (ABC) Algorithm for Solving Consistency Problems in SDN Distributed Controllers)

  • 유승언;임환희;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.145-146
    • /
    • 2018
  • 중앙 집중적인 단일 컨트롤러를 이용할 경우 메시지 과부하로 인해 응답이 지연될 수 있으므로 스위치들이 기존의 컨트롤러를 대신하여 새로운 컨트롤러와 연결되어 트래픽을 처리하는 다중 컨트롤러가 효율적이다. 본 논문에서는 SDN 분산 컨트롤러에서 일관성 문제를 해결하기 위해 우선순위에 기반을 둔 향상된 인공벌 군집(ABC) 알고리즘을 제안한다.

  • PDF

강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계 (Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases)

  • 최우용;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.586-591
    • /
    • 2014
  • 본 연구에서는 인공 벌 군집(ABC: Artificial Bee Colony) 알고리즘을 이용하여 주어진 레이더 데이터로부터 강수 사례와 비강수 사례를 분류하는 방사형 기저함수 신경회로망(RBFNNs: Radial Basis Function Neural Networks)분류기를 소개한다. 기상청에서 사용하고 있는 기상 레이더 데이터의 특성 분석을 통해 입력 데이터를 구성한다. 방사형 기저함수 신경회로망의 조건부에서는 Fuzzy C-Means 클러스터링 방법을 이용하여 적합도를 계산하고, 결론부에서는 최소자승법(LSE: Least Square Method)을 이용하여 다항식 계수를 추정한다. 추론부에서 최종출력 값은 퍼지 추론 방법을 이용하여 얻어진다. 제안된 분류기의 성능은 기상청에서 사용하는 QC와 CZ 데이터를 고려하여 비교 및 분석되어진다.

인공벌 군집 알고리즘을 기반으로 한 복합탐색법 (A Hybrid Search Method Based on the Artificial Bee Colony Algorithm)

  • 이수항;김일현;김용호;한석영
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.213-217
    • /
    • 2014
  • A hybrid search method based on the artificial bee colony algorithm (ABCA) with harmony search (HS) is suggested for finding a global solution in the field of optimization. Three cases of the suggested algorithm were examined for improving the accuracy and convergence rate. The results showed that the case in which the harmony search was implemented with the onlooker phase in ABCA was the best among the three cases. Although the total computation time of the best case is a little bit longer than the original ABCA under the prescribed conditions, the global solution improved and the convergence rate was slightly faster than those of the ABCA. It is concluded that the suggested algorithm improves the accuracy and convergence rate, and it is expected that it can effectively be applied to optimization problems with many design variables and local solutions.