본 논문에서는 RGB 컬러 정보와 퍼지 이진화를 이용하여 차량 번호판의 개별 코드를 추출하는 방법을 제안한다 제안된 방법은 비영업용 차량 영상에서 차량 번호판 영역을 추출하기 위해 녹색의 분포가 밀집되어 있는 영역을 번호판의 후보 영역으로 설정하고 번호판의 후보 영역에서 흰색의 밀집도가 높은 부분을 번호판의 영역으로 추출한다. 개별 코드 추출은 추출된 번호판 영역에서 3×3 소벨 마스크를 이용하여 잡음을 제거하고 퍼지 이진화 방법을 적용하여 번호판의 영역을 이진화 한다. 이진화된 번호판 영역을 윤곽선 따라가기 알고리즘을 적용하여 개별 코드를 추출한다. 제안된 방법의 성능을 평가하기 위하여 실제 비영업용 차량 번호판에 적용한 결과, 기존의 방법보다 번호판 영역에서 개별 코드의 추출률이 개선된 것을 확인하였다.
본 논문에서는 현재 자가용 차량 번호판으로 사용되고 있는 4종류의 번호판인, 구형 녹색 번호판 두 종류와 유럽식 신형 흰색 번호판 두 종류에 대해 개별 코드를 효과적으로 추출하기 위한 개선된 퍼지 이진화 방법을 제안한다. 차량 영상에서 수직 에지와 반복 이진화 기법, 그리고 Grassfire 알고리즘을 적용하여 번호판의 후보 영역을 추출하고, 번호판의 형태학적 특징을 이용해 잡음을 제거한 후, 최종 번호판 영역을 추출한다 추출된 번호판 영역에서 개선된 퍼지 이진화 기법을 적용하여 개별 코드를 추출한다. 본 논문에서 제안하는 개선된 퍼지 이진화 방법은 추출한 번호판 영역을 그레이 레벨로 변환한 후에 번호판의 명도를 2구간으로 나누고 각각의 구간에 퍼지 소속 함수를 적용하여 번호판 영역을 이진화한 후, 퍼지 소속 함수에 의해 이진화 된 2개의 번호판 영역 중에서 가장 최적화된 번호판 영역을 선택하여 개별 코드를 추출한다. 본 논문에서 제안한 기법을 4종류의 번호판이 부착된 327장(구형녹색 50장, 신형녹색 157장, 짧은 흰색 60장, 긴 흰색 60장)을 대상으로 실험한 결과, 번호판 영역 추출은 327장의 영상중 97%가 추출되었고 개별 코드 추출은 번호판 영역이 추출된 324장의 영상에서 97%가 추출된 결과를 보였다.
본 논문에서는 색상 정보를 이용하여 배경 영역이 포함된 자동차의 전,후면 사진에서의 자동차 번호판 영역(녹색, 흰색) 추출과 추출된 번호판에서 글자를 분리해내는 방법을 제안한다. 기존의 색상 정보를 이용하여 번호판을 추출하는 방법은 흰색 번호판(신형 번호판)의 경우에는 배경 영역에서 흰색인 영역도 많고 국내 차량 중에 흰색 차량이 많기 때문에 번호판 영역과 배경 영역 사이의 명확한 구분에 어려움이 있었다. 따라서 행별 Red값 변화도를 조사하여 배경 영역과 번호판 영역 사이의 명확한 구분을 하게 하며, 흰색 번호판의 경우에 추출이 안되면 흰색의 기준을 더 낮추어서 다시 영역 추출을 할 수 있는 재추출 알고리즘을 추가해서 비교적 어두운 사진에서도 번호판영역을 추출할 수 있도록 한다. 추출된 번호판에서 글자를 추출해내는 과정에서도 이진화를 거치면 노이즈가 많이 생기기 때문에 이를 줄이고자 행별 Red값 변화도를 조사하여 번호판 영역에서 위아래 부분의 노이즈를 줄일 수 있도록 하였다.
본 논문에서는 명암도 정보와 제안된 퍼지 이진화을 이용하여 차량 번호판 영역과 개별 코드를 추출하는 방법을 제안한다. 제안된 방법은 비영업용 차량 영상을 대상으로 차량 번호판 영역을 추출하기 위해 명암도 변화 특성을 이용하여 차량 번호판을 추출한다. 추출된 차량 번호판 영역에서는 제안된 퍼지 이진화 방법을 적용하석 차량 번호판의 영역을 이진화하고 이진화된 차량 영역판에 대해서 히스토그램 방법을 적용하여 개별 코드를 추출한다. 제안된 방법의 성능을 평가하기 위하여 실제 비영업용 차량 번호판에 적용한 결과, 기존의 차량 번호판의 추출 방법보다 번호판 영역의 추출률이 개선되었고 제안된 퍼지 이진화 방법을 적용하여 개별 코드를 추출하는 것이 효율적인 것을 확인하였다.
차량 번호판 인식 시스템은 크게 번호판 영역의 추출과 인식 단계로 구분된다. 본 논문에서는 전처리단계로써 임계화 방식을 이용하여 번호판 영역을 추출한다. 차량 영상을 임계화하고 영상에서 발생되는 잡음을 제거한다. 잡음이 제거된 차량 영상에서 각 라인의 밀도비율을 계산하여 번호판 영역에서 나타나는 밀도의 비율과 비슷하게 나타나는 영역을 후보영역으로 설정한다. 설정된 후보영역이 번호판 영역의 특징과 유사하게 나타나는 부분을 추출한다. 그리고 추출된 번호판 영역은 코호넨 알고리즘의 2${\times0}$2마스크에 적용시켜서 윤곽선을 추출하고, 번호판의 문자와 숫자를 인식한다. 코호넨 알고리즘의 2${\times0}$2마스크를 이용하게 되면, 윤곽선의 잡음을 최대한으로 줄여주는 특성을 가진다. 잡음이 제거된 후에, 번호판의 문자와 숫자들을 코호넨 알고리즘을 이용하여 인식하였다. 실험 결과에서는 임계화 작업을 이용한 번호판 추출과 코호넨 알고리즘을 이용한 번호판 인식이 우수하는 것을 알 수 있다.
본 논문에서는 HSI 정보와 신경망의 비지도 학습 방법인 ART2 알고리즘을 이용하여 신 차량 번호판을 인식하는 방법을 제안한다. 제안된 방법은 차량의 영상에서 번호판 영역을 추출하는 부분과 추출된 번호판 영역의 문자를 인식하는 부분으로 구성된다. 본 논문에서는 차량 번호판 영역을 추출하기 위해 HSI 컬러 모형의 Hue 정보를 이용하여 차량 번호판 영역을 추출하고 개선된 퍼지 이진화 방법을 적용하여 추출된 차량 번호판 영역으로부터 문자를 포함한 특징 영역을 이치화 한 후에 4방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드를 인식하기 위해 잡음과 훼손에 비교적 강한 ART2 알고리즘을 적용한다. 제안된 방법의 차량 번호판 추출 및 인식 성능을 평가하기 위하여 실제 비영업용 차량 번호판에 적용한 결과, 기존의 차량 번호판의 추출 방법보다 번호판 영역의 추출률이 개선되었다. 또한 ART2 알고리즘을 적용하여 신 차량 번호판을 인식하는 것이 효율적임을 확인하였다.
본 논문은 환경에 독립적인 자동차 영상에서 자동차 번호판 영역을 추출하는 방법을 제안하고 실험 결과를 기술한다. 번호판 주위환경에는 다양한 조건이 존재하며 이에 적응성을 가지고 빠른 추출을 수행하는 것은 매우 중요한 문제이다. 본 논문은 이러한 문제를 해결하기 위해 HSI 컬러 모델에 기반하여 번호판을 면밀히 분석하여 번호판을 유형별로 그룹화하고, 지역 분할 및 병합을 통해 빠른 시간안에 번호판 후보 영역을 검색한다. 그리고 번호판이 갖는 특성을 이용하여 후보 영역에서 번호판 영역임을 검증함으로써 자동차 번호판 영역을 찾는다.
본 연구에서는 차량 번호판에서 추출된 문자영역의 DCT(Digital Cosine Transform) 계수와 LVQ (Learning Vector Quantization) 신경회로망을 이용하여 차량 번호판 인식 시스템을 구성하였다. 입력된 차량영상의 RGB 칼라정보를 이용하여 번호판 영역을 추출하고 추출된 번호판의 히스토그램과 문자의 상대적 위치정보를 병합하여 문자영역을 추출하였다. 이렇게 추출된 문자영역의 명암도 영상에 DCT를 적용하여 얻은 특징 벡터는 LVQ 신경회로망의 입력으로 사용되어 인식 과정을 수행한다. 제안된 시스템의 검증을 위하여 다양한 환경에서 촬영된 109대의 자가용 차량영상에 대하여 실험하여 상대적으로 높은 번호판 영역 추출율과 인식률을 보였다.
자동차 번호판 인식 시스템은 영상획득, 번호판 영역 추출, 추출된 번호판 영역의 전처리, 문자부분 영역화, 문자인식 등의 5가지 핵심부분으로 구성된다. 그 중에서도 번호판 영역 추출, 추출된 영역의 전처리, 문자부분 영역화의 정확성은 전체 시스템 인식률에 지대한 영향을 줄 수 있는 부분으로써 그 정확성이 요구된다. 이에 본 논문에서는 컴퓨터 비젼 분야 중의 하나인 영상처리 기법을 사용하여 명암의 변화에도 문자를 잘 추출할 수 있는 Dynamic Adaptive Threshold 방법을 사용하여 추출된 번호판 영역을 이진화하고, 정확하게 문자 부분을 영역화하기 위한 방법으로 누적분포와 번호판 문자배열 특성을 이용한 방법을 제안한다. 그리고 추출되어진 문자는 ART2 신경망을 이용하여 인식한다.
자동차 번호판 인식 시스템을 구현하기 위해서는 영상에서 번호판을 추출하는 영역과 추출된 번호판에서 각 문자의 숫자를 추출하는 영역, 마지막으로 이를 인식하는 영역으로 나누어진다. 본 논문에서는 번호판 영역이 다른 영역보다 녹색의 밀집도가 높다는 특징을 이용하여 이미지에서 번호판을 추출하고, 개선된 퍼지 ART학습 알고리즘으로 자동차 번호판 인식에 적용한다. 실험결과에서는 여러 차량에 대해 인식율이 우수한 것을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.