• Title/Summary/Keyword: 번역 오류

Search Result 89, Processing Time 0.02 seconds

Method for Detecting Errors of Korean-Chinese MT Using Parallel Corpus (병렬 코퍼스를 이용한 한중 기계번역 오류 탐지 방법)

  • Jin, Yun;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.113-117
    • /
    • 2008
  • 본 논문에서는 패턴기반 자동번역시스템의 효율적인 번역 성능 향상을 위해 병렬 코퍼스(parallel corpus)를 이용한 오류 자동 탐지 방법을 제안하고자 한다. 번역시스템에 존재하는 대부분 오류는 크게 지식 오류와 엔진 오류로 나눌 수 있는데 통상 이런 오류는 이중 언어가 가능한 훈련된 언어학자가 대량의 자동번역 된 결과 문장을 읽음으로써 오류를 탐지하고 분석하여 번역 지식을 수정/확장하거나 또는 엔진을 개선하게 된다. 하지만, 이런 작업은 많은 시간과 노력을 필요로 하게 된다. 따라서 본 논문에서는 병렬 코퍼스 중의 목적 언어(Target Language) 문장 즉, 정답 문장과 자동번역 된 결과 문장을 다양한 방법으로 비교하면서 번역시스템에 존재하고 있는 지식 및 엔진 오류를 자동으로 탐지하는 방법을 제안한다. 제안한 방법은 한-중 자동번역시스템에 적용하여 그 정확률과 재현률을 측정하였으며, 자동적으로 오류를 탐지하여 추출 할 수 있음을 증명하였다.

  • PDF

Critical Error Span Detection Model of Korean Machine Translation (한국어 기계 번역에서의 품질 검증을 위한 치명적인 오류 범위 탐지 모델)

  • Dahyun Jung;Seungyoon Lee;Sugyeong Eo;Chanjun Park;Jaewook Lee;Kinam Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.80-85
    • /
    • 2023
  • 기계 번역에서 품질 검증은 정답 문장 없이 기계 번역 시스템에서 생성된 번역의 품질을 자동으로 추정하는 것을 목표로 한다. 일반적으로 이 작업은 상용화된 기계 번역 시스템에서 후처리 모듈 역할을 하여 사용자에게 잠재적인 번역 오류를 경고한다. 품질 검증의 하위 작업인 치명적인 오류 탐지는 번역의 오류 중에서도 정치, 경제, 사회적으로 문제를 일으킬 수 있을 만큼 심각한 오류를 찾는 것을 목표로 한다. 본 논문은 치명적인 오류의 유무를 분류하는 것을 넘어 문장에서 치명적인 오류가 존재하는 부분을 제시하기 위한 새로운 데이터셋과 모델을 제안한다. 이 데이터셋은 거대 언어 모델을 활용하는 구축 방식을 채택하여 오류의 구체적인 범위를 표시한다. 또한, 우리는 우리의 데이터를 효과적으로 활용할 수 있는 다중 작업 학습 모델을 제시하여 오류 범위 탐지에서 뛰어난 성능을 입증한다. 추가적으로 언어 모델을 활용하여 번역 오류를 삽입하는 데이터 증강 방법을 통해 보다 향상된 성능을 제시한다. 우리의 연구는 기계 번역의 품질을 향상시키고 치명적인 오류를 줄이는 실질적인 해결책을 제공할 것이다.

  • PDF

Analyzing the Types and Causes of Korean-to-English Machine Translation Errors: Focused on Morphological and Syntactical Errors (한-영 기계번역 결과물의 오류 유형 및 원인 분석: 형태적·구문적 오류를 중심으로)

  • Baek, Ji-Yeon;Goo, Hye-Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.199-204
    • /
    • 2022
  • This study was carried out in an L2 writing class using machine translation. The aim of this study was to explore what types of errors are identified the most frequently in the Korean-to-English machine translation output and what causes those errors. The participants were seven EFL university students who completed three writing tasks throughout the semester. The findings of data analysis indicated that the most common errors were seen in sentence structure and mechanics, and those errors in the translated texts were caused by the errors in the Korean source texts.

KoCED: English-Korean Critical Error Detection Dataset (KoCED: 윤리 및 사회적 문제를 초래하는 기계번역 오류 탐지를 위한 학습 데이터셋)

  • Sugyeong Eo;Suwon Choi;Seonmin Koo;Dahyun Jung;Chanjun Park;Jaehyung Seo;Hyeonseok Moon;Jeongbae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.225-231
    • /
    • 2022
  • 최근 기계번역 분야는 괄목할만한 발전을 보였으나, 번역 결과의 오류가 불완전한 의미의 왜곡으로 이어지면서 사용자로 하여금 불편한 반응을 야기하거나 사회적 파장을 초래하는 경우가 존재한다. 특히나 오역에 의해 변질된 의미로 인한 경제적 손실 및 위법 가능성, 안전에 대한 잘못된 정보 제공의 위험, 종교나 인종 또는 성차별적 발언에 의한 파장은 실생활과 문제가 직결된다. 이러한 문제를 완화하기 위해, 기계번역 품질 예측 분야에서는 치명적 오류 감지(Critical Error Detection, CED)에 대한 연구가 이루어지고 있다. 그러나 한국어에 관련해서는 연구가 존재하지 않으며, 관련 데이터셋 또한 공개된 바가 없다. AI 기술 수준이 높아지면서 다양한 사회, 윤리적 요소들을 고려하는 것은 필수이며, 한국어에서도 왜곡된 번역의 무분별한 증식을 낮출 수 있도록 CED 기술이 반드시 도입되어야 한다. 이에 본 논문에서는 영어-한국어 기계번역 분야에서의 치명적 오류를 감지하는 KoCED(English-Korean Critical Error Detection) 데이터셋을 구축 및 공개하고자 한다. 또한 구축한 KoCED 데이터셋에 대한 면밀한 통계 분석 및 다국어 언어모델을 활용한 데이터셋의 타당성 실험을 수행함으로써 제안하는 데이터셋의 효용성을 면밀하게 검증한다.

  • PDF

Automatic English-Korean Address Translation System for Extremely Unpredictable Error Generating Language Environments (극한 언어 환경에 대응 가능한 영한 자동 주소번역 시스템)

  • Jin, Jingzhi;Hwang, Myeongjin;Lee, Seungphil
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.239-242
    • /
    • 2016
  • 데이터베이스 기반 자동 주소번역은 입력 오류에 취약하며 범용 기계번역을 이용한 주소번역은 입력 및 번역 주소에 대한 품질 평가가 어렵다. 본 논문에서는 예측할 수 없는 입력 오류에도 대응할 수 있는 자동 주소번역 시스템을 제안한다. 제안 시스템은 n-gram 기반 검색, 미검색/오검색 분류, 번역, 신뢰도 자동평가로 구성된다. 신뢰할 수 있는 입력으로 자동 분류한 영문 국내주소를 국문으로 번역한 결과 95%이상의 정확도를 보였다.

  • PDF

Korean Spell Correction based on Denoising Transformer (Denoising Transformer기반 한국어 맞춤법 교정기)

  • Park, Chanjun;Jeong, Sol;Yang, Kisu;Lee, Sumi;Joe, Jaechoon;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.368-372
    • /
    • 2019
  • 맞춤법 교정이란 주어진 문장에서 나타나는 철자 및 맞춤법 오류들을 올바르게 교정하는 것을 뜻하며 맞춤법 교정 시스템이란 컴퓨터가 이를 자동으로 수행하는 것을 의미한다. 본 논문에서는 맞춤법 교정을 기계번역의 관점으로 바라보고 문제를 해결하였다. 소스문장에 맞춤법 오류문장, 타겟 문장에 올바른 문장을 넣어 학습시키는 방법을 제안한다. 본 논문에서는 단일 말뭉치로 한국어 맞춤법 병렬 말뭉치를 구성하는 방법을 제안하며 G2P(Grapheme to Phoneme)를 이용한 오류 데이터 생성, 자모 단위 철자 오류데이터 생성, 통번역 데이터 기반 오류 데이터 생성 크게 3가지 방법론을 이용하여 맞춤법 오류데이터를 생성하는 방법론을 제안한다. 실험결과 GLEU 점수 65.98의 성능을 보였으며 44.68, 39.55의 성능을 보인 상용화 시스템보다 우수한 성능을 보였다.

  • PDF

Automatic English-Korean Address Translation System for Extremely Unpredictable Error Generating Language Environments (극한 언어 환경에 대응 가능한 영한 자동 주소번역 시스템)

  • Jin, Jingzhi;Hwang, Myeongjin;Lee, Seungphil
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.239-242
    • /
    • 2016
  • 데이터베이스 기반 자동 주소번역은 입력 오류에 취약하며 범용 기계번역을 이용한 주소번역은 입력 및 번역 주소에 대한 품질 평가가 어렵다. 본 논문에서는 예측할 수 없는 입력 오류에도 대응할 수 있는 자동 주소번역 시스템을 제안한다. 제안 시스템은 n-gram 기반 검색, 미검색/오검색 분류, 번역, 신뢰도 자동평가로 구성된다. 신뢰할 수 있는 입력으로 자동 분류한 영문 국내주소를 국문으로 번역한 결과 95%이상의 정확도를 보였다.

  • PDF

Verification of the Domain Specialized Automatic Post Editing Model (도메인 특화 기계번역 사후교정 모델 검증 연구)

  • Moon, Hyeonseok;Park, Chanjun;Seo, Jaehyeong;Eo, Sugyeong;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.3-8
    • /
    • 2021
  • 인공지능 기술이 발달함에 따라 기계번역 기술도 많은 진보를 이루었지만 여전히 기계번역을 통한 번역문 내에는 사람이 교정해야 하는 오류가 다수 포함되어있다. 이렇게 번역 모델에서 생성되는 오류를 교정하는 전문인력의 요구를 경감시키기 위하여 기계번역 사후교정 연구가 등장하였고, 해당 연구는 현재 WMT를 주축으로 활발하게 연구되고 있다. 이러한 사후교정 연구는 최근 도메인 특화 관점에서 주로 연구가 이루어지고 있으며 현재 많은 도메인에서 유의미한 성과를 내고 있다. 하지만 이런 연구들은 기존 번역문의 품질을 얼만큼 향상시켰는가에 초점을 맞출 뿐, 다른 도메인 특화 번역모델의 성능과 비교했을 때 얼마나 뛰어난지는 밝히지 않기 때문에 사후교정 연구가 도메인 특화에서 효과적으로 작용하는지 명확하게 알 수 없다. 이에 본 연구에서는 도메인 특화 번역 모델과 도메인 특화 사후교정 모델간의 성능을 비교함으로써, 도메인 특화에서 사후교정을 통해 얻을 수 있는 실제적인 성능을 검증한다. 이를 통해 사후교정이 도메인 특화 번역모델과 비교했을 때 미미한 수준의 성능을 보임을 실험적으로 확인하였고, 해당 실험 결과를 분석함으로써 향후 도메인특화 사후교정 연구의 방향을 제안하였다.

  • PDF

A Study of Automatic Extraction of Domain Specified Dictionary (병렬 말뭉치를 이용한 도메인 특화 사전 자동 추출 연구)

  • Park, Eun-Jin;Hwang, Kum-Ha;Kim, Young-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.237-241
    • /
    • 2009
  • 본 논문에서는 도메인별 병렬 말뭉치를 이용하여 해당 도메인에 특화된 한영 대역쌍을 Moses Toolkit을 이용하여 자동 추출하였다. 이렇게 추출된 대역쌍은 도메인 특화 자동 번역 시스템의 번역 사전으로 사용하기에는 많은 오류가 포함되어 있기 때문에, 본 논문에서는 이를 효율적으로 제거할 수 있는 식을 제안하였다. 본 논문에서 제안한 식으로 오류를 제거한 결과, 임계값 0.5를 기준으로 추출된 한영 대역쌍이 1,098개였고, 이는 실험에 사용한 기업 분야 병렬 말뭉치 42,200문장 중에서 29,292문장(69.4%)에 영향을 주었다. 자동으로 추출한 도메인 특화 번역 지식을 기존 자동 번역 시스템의 번역 지식에 적용한 결과 BLEU가 0.0054 향상되었다.

  • PDF

Classification and analysis of error types for deep learning-based Korean spelling correction (딥러닝 기반 한국어 맞춤법 교정을 위한 오류 유형 분류 및 분석)

  • Koo, Seonmin;Park, Chanjun;So, Aram;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.65-74
    • /
    • 2021
  • Recently, studies on Korean spelling correction have been actively conducted based on machine translation and automatic noise generation. These methods generate noise and use as train and data set. This has limitation in that it is difficult to accurately measure performance because it is unlikely that noise other than the noise used for learning is included in the test set In addition, there is no practical error type standard, so the type of error used in each study is different, making qualitative analysis difficult. This paper proposes new 'error type classification' for deep learning-based Korean spelling correction research, and error analysis perform on existing commercialized Korean spelling correctors (System A, B, C). As a result of analysis, it was found the three correction systems did not perform well in correcting other error types presented in this paper other than spacing, and hardly recognized errors in word order or tense.