• Title/Summary/Keyword: 버스히터

Search Result 7, Processing Time 0.03 seconds

Design of Flight Software for Heater Control in LEO Satellites (저궤도 관측위성의 히터제어를 위한 위성비행소프트웨어 설계)

  • Lee, Jae-Seung;Shin, Hyun-Kyu;Choi, Jong-Wook;Cheon, Yee-Jin
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.141-148
    • /
    • 2011
  • LEO satellites have many heaters for thermal control, such as bus module heaters, payload heaters and battery internal heaters. Some of these heaters are controlled by thermisters, and others can be controlled by flight software. These heaters are divided into various types of group according to the location, telemetry variables, flight software logic, power distribution, etc. Thus, it is difficult to find out which heaters are included in a certain group and modify heater control logic for a new/other software developers. This document describes about the general/special control logic for satellite heaters and groups/arrays for heaters.

Fuzzy Controller design of fuel fired heater for vehicle to control temperature (자동차용 연소식 프리히터의 온도제어를 위한 퍼지 제어기 설계)

  • Jeong, W.G.;Lee, H.W.;Lee, J.S.;Kim, J.H.;Kim, G.Y.;Jo, W.R.;Lee, G.K.
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.4
    • /
    • pp.29-36
    • /
    • 2009
  • The fuzzy controller of the FFH(Fuel Fired Heater) used for vehicle is designed in this study. Two of the most important things of the pre-heater are how fast it can be at the set temperature and how to reduce the temperature deviation in the space to a minimum. The temperature deviation of the existed FFH with PI controller for temperature controller was reduced. Also, the fuzzy controller improved the response characteristics, and then the performance was inspected. When setting the temperature in this designed fuzzy controller, it took 12 minutes in the existed PI control method to reach $25^{\circ}C$. However, it took 9 minutes and 20 seconds in the fuzzy control method. Therefore, it is proved that the fuzzy controller is better than the existed one with fast response performance as 2 minutes 40 seconds. The temperature deviation was $2.4^{\circ}C$ in the existed control method but $1.6^{\circ}C$ in the designed fuzzy controller. Accordingly, the temperature deviation was improved too.

  • PDF

A Study on the Optimum Design of Warm-up rate in a Air-Heated Heater System by Using CFD Analysis and Taguchi Method (전산유체해석과 다구찌 방법을 연계한 공기 가열식 히터 시스템의 난방속효성 최적화에 관한 연구)

  • Kim, Min-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.72-82
    • /
    • 2005
  • The objective of this paper is to describe the optimization of design parameters in a large-sized commercial bus heater system by using CFD(computational fluid dynamics) analysis and Taguchi method. In order to obtain the best combination of each control factor which results in a desired performance of heater system, the parameter design of the Taguchi method is adopted for the robust design considering the dynamic characteristic. The research activity may be divided into four phases. The first one is analyzing the problem, i.e., ascertaining the influential factors. In the second phase the levels were set in such a way that their variation would significantly influence the response. In the third phase the experimental runs were designed. In the final phase the planned runs were carried out numerically to evaluate the optimal combination of factors which is able to provide the best response. In this study, eight factors were considered for the analysis: one with two level and seven with three level combinations comprising the $L_{18}(2^1{\times}3^7)$ orthogonal array. The results of this study can be summarized as follows ; (i)The optimum condition of control factor is a set of <$A_2\;B_1\;C_3\;D_3\;E_1\;F_2\;G_3\;H_2$> where A is shape of the outer fin, B is pitch of the outer fin, C is height of the outer fin, D is the inner fin number, E is the inner fin height, F is length of the flame guide, G is diameter of the heating element and H is clearance between air guide and heating element. (ii)The heat capacity of heated discharge air under the optimum condition satisfies the equation y=0.6M w here M is a signal factor. (iii)The warm-up rate improves about three times, more largely as com pared with the current condition, which results in about 9.2minutes reduction.

Guided Wave Characterization Assessment for PWSCC Detection of Pressurizer Heater Sleeve Weld (가압기 히터슬리브 용접부 PWSCC 검출을 위한 유도초음파 특성 평가)

  • Joo, Kyung-Mun;Moon, Yong-Sig;Chung, Woo-Geun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.21-25
    • /
    • 2011
  • Although many defects in PZR heater sleeve have been reported continually from operating experiences in oversea nuclear power plant, utilities get into difficulties in finding appropriate methods for diagnostics of the components due to the limited access or high radiation problems. Recently, as an alternative, diagnostics using Guided Wave Testing(GWT) are proposed and the attention of the methods has been growing gradually because of their long range inspection capability. This study is to investigate the effectiveness of GWT to detect PWSCC in welding points of PZR heater sleeve. Moreover, mode sensitivity analysis of GWT and optimal frequency for the diagnostics of PWSCC are presented by testing the mock-ups specimens that contain artificial flaws.

Sensitivity Analysis of Contact Resistance for Thermal Analysis of Spacecraft (위성 열해석을 위한 접촉열저항의 민감도 해석)

  • Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.117-125
    • /
    • 2004
  • Performing the sensitivity analysis of contact conduction on the basis of the thermal model already established, the study of thermal design is accomplished for the preparation of the future changes of mechanical interface design. A relatively simple thermal model is taken into consideration for the convenience of the analysis. A variety of the spacecraft bus voltages and the contact resistances are tried. As a consequence, when the mechanical interface condition is changed at the same module, the successful thermal design could be achieved if we design the heater to have sufficiently large power with reference to the heritage of contact resistance.

Development and Performance Validation of Thermal Control Subsystem for Earth Observation Small Satellite Flight Model (지구관측 소형위성 비행모델의 열제어계 개발 및 성능 검증)

  • Chang, Jin-Soo;Jeong, Yun-Hwang;Kim, Byung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1222-1228
    • /
    • 2008
  • A small satellite, DubaiSat-1 FM(Flight Model), which is based on SI-200 standard bus platform and scheduled to be launched in 2008, is being developed by Satrec Initiative and EIAST(Emirates Institution for Advanced Science and Technology). The TCS(Thermal Control Subsystem) of DubaiSat-1 FM has been designed to mainly utilize passive thermal control in order to minimize power consumption, but the active control method using heaters has been applied to some critical parts. Also, thermal analysis has been performed for DubaiSat-1's mission orbit using a thermal analysis model. The thermal design is modified and optimized to satisfy the design temperature requirements for all parts according to the analysis result. The thermal control performance of DubaiSat-1 FM is verified by thermal vacuum space simulation, consisting of thermal cycling and thermal balance test. Also, to validate the thermal modeling of DubaiSat-1 FM, comparison of test results with analysis has been performed and model calibration has been completed.

Thermal Behavior of Spacecraft Liquid-Monopropellant Hydrazine($N_2$$H_4$) Propulsion System (인공위성 단기액체 하이드라진($N_2$$H_4$) 추진시스템의 열적 거동)

  • Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.1-11
    • /
    • 1999
  • Thermal behavior of spacecraft propulsion system utilizing monopropellant hydrazine ($N_2$$H_4$) is addressed in this paper. Thermal control performance to prevent propellant freezing in spacecraft-operational orbit was test-verified under simulated on-orbit environment. The on-orbit environment was thermally achieved in space-simulation chamber and by the absorbed-heat flux method that implements an artificial heating through to the spacecraft bus panels enclosing the propulsion system. Test results obtained in terms of temperature history of propulsion components are presented and reduced into duty cycles of the avionics heaters which are dedicated to thermal control of those components. The duty cycles are subsequently converted into the electrical power required in the operational orbit. Additionally, cyclic temperature of each component, which was made under thermal-balanced condition of spacecraft, is compared to the acceptable design range and justified from the viewpoint of system verification.

  • PDF