• 제목/요약/키워드: 밸브 노치

검색결과 13건 처리시간 0.02초

양방향 회전형 사축식 유압 피스톤 펌프의 벨브 플레이트 형상이 토크 맥동에 주는 영향 (Influence of valve plate configuration on torque ripple of a bi-directional bent-axis type hydraulic piston pump)

  • 김성훈;홍예선;김두만
    • 한국항공우주학회지
    • /
    • 제35권3호
    • /
    • pp.231-237
    • /
    • 2007
  • EHA용 유압 펌프의 토크 맥동은 저속 회전 영역에서 실린더 위치의 제어에 외란으로 작용할 수 있다. 원칙적으로 피스톤 펌프에 의해 발생되는 반력 토크의 주기적인 변화는 실린더 압력의 파형과 밀접한 관계를 가지고 있다. 일정 속도로 회전하는 단방향 피스톤 펌프의 경우에는 밸브 플레이트의 예압각이나 노치를 활용하여 실린더 압력의 오버슈트나 변화율을 조절할 수 있다. 따라서 본 연구에서는 밸브 플레이트의 형상이 EHA용 사축식 유압 피스톤 펌프의 토크 맥동에 미치는 영향을 분석하였다. 그 결과로서, 양방향 회전형 유압 피스톤 펌프의 토크 맥동은 회전 속도의 영역에 무관하게 밸브 플레이트의 예압각이나 노치를 이용하여 개선하는 것이 불가능한 것으로 나타났다.

양방향 구동 사판식 액시얼 피스톤 펌프의 밸브 플레이트 노치 설계에 관한 연구 (A Study on Design of Notches in Valve Plate of Swash Plate Type Axial Piston Pumps Operated Bi-directionally)

  • 최세령;이일영;한성민;신정우
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권3호
    • /
    • pp.39-46
    • /
    • 2016
  • Flow and pressure ripple in swash plate type piston pumps is largely dependent on the design of notches(silencing grooves) in the valve plate. In uni-directional pumps, the basic design concept for notches in the valve plate could be said to be established. It is easily deduced that the design concept for notches in uni-directional pumps can not be simply applied to bi-directional pumps requested for EHA(electric hydrostatic actuators). To carry out systematic research on technological issues regarding notch applications to bi-directional piston pumps, five notch designs are devised. The effects of the notch designs on the characteristics of the pump are investigated by numerical simulations and experiments. Through this study, basic concepts about notch design for bi-directional piston pumps are suggested.

SimulationX®를 이용한 가변 사판식 액셜 피스톤 펌프의 밸브플레이트 노치 최적화에 관한 연구 (SimulationX®-based Modeling for Valve-Plate Notch Design of Variable Swash-Plate Axial Piston Pump)

  • 이산성;정원지;임동재;차태형;김수태;이정실;최경신
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.104-112
    • /
    • 2018
  • Considering the shape of a valve plate in design is important for reducing the pulsation phenomenon, which is a negative factor in pump performance. The purpose of this study is to propose an optimized method for a valve-plate V-type notch of a piston pump by modeling and simulation. The method uses $SimulationX^{(R)}$, a commercial hydraulic analysis program, and to provide data for the designing of the notch. The opening areas are determined by performing kinematic analysis of the notch part where the opening area changes rapidly. After applying the result analysis, the main effects on maximum pressure pulsation and maximum backflow according to the notch design factors are analyzed by using the full factorial method of experimental design. The optimized solutions are derived for the notch design variables, based on the analyzed data.

원전 역지 밸브/배관 맞대기 용접부와 밸브 몸체의 취성 파괴에 미치는 잔류응력 및 Charpy V-노치 충격에너지의 영향 고찰 (Investigation on Effects of Residual Stresses and Charpy V-Notch Impact Energy on Brittle Fractures of the Butt Weld between Close Check Valve and Piping, and of the Valve Body in Nuclear Power Plants)

  • 김종성;김현수
    • 한국압력기기공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.69-73
    • /
    • 2015
  • The study investigated effects of residual stresses and Charpy impact energy on brittle fractures of the butt weld between the valve and the piping, and of the valve body in nuclear power plants via a linear elastic fracture mechanics approach in the ASME B&PV Code, Sec.XI and finite element analysis. Weld residual stress in a butt weld between close check valve and piping, and residual stress in the valve due to casting process were assumed to be proportional to yield strength of base metal. Operating stresses in the butt weld and the valve body were calculated using approximate engineering formulae and finite element analysis, respectively. Applied stress intensity factors were calculated by assuming postulated cracks with specific sizes and then by substituting the residual stresses and the operating stresses into engineering formulae presented in the ASME B&PV Code, Sec.III. Plane strain fracture toughness was derived by using a correlation between Charpy V-notch impact energy and fracture toughness. Structural integrity of the weld and the body against brittle fracture was assessed by using the applied stress intensity factors, plane strain fracture toughness and the linear elastic fracture mechanics approach. As a result, it was identified that the structural integrity was maintained with decreasing the residual stress levels and increasing the Charpy V-notch impact energy.

CFD를 이용한 유압 서보밸브의 열유체 해석 (THD Analysis of a Hydraulic Servo Valve Using CFD)

  • 정요한;박태조
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권1호
    • /
    • pp.8-13
    • /
    • 2014
  • Hydraulic servo valves are widely used in various fluid power systems because of their fast response and precision control. In this paper, we studied the effect of metering notch shapes and amount of their openings on the flow characteristics within the spool valve using a computational fluid dynamic (CFD) code, FLUENT. To obtain the results for more realistic operating conditions, viscous heating due to the jet flow and viscosity variation of the hydraulic fluid with temperature were considered. For two types of notch shape, streamlines, oil temperature and viscosity distributions, and variations of flow and friction forces acting on spool were showed. The flow and friction forces affected by the metering notch shapes and their openings, and oil temperature rise near metering notch was significant enough to results in the jamming phenomenon. A thermohydrodynamic (THD) flow analysis adopted in this paper can be used in optimum design of hydraulic servo valves.

메인 컨트롤밸브의 해석모델 개발 및 검증 (Development and Verification of Analytical Model of a Main Control Valve)

  • 김동명;이정민;정원지;장주섭
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권2호
    • /
    • pp.39-48
    • /
    • 2015
  • In order to control the actuators of hydraulic machinery such as excavators, various control valves are typically assembled in a single block. Such a control block is called a main control valve(MCV). In this paper, we analyzed the working principle and the particular purpose of the design of all valves included in the MCV system. To Examine the reliability of the analysis model, the pressure drop of the MCV at each port was measured. The authors developed an analytical model of the control valve(main spool, load poppet, pressure relief, make up, and regeneration). The authors considered the notch shape of the spool while developing the analytical models of the main spool valve. Most importantly, at the stage before the analysis model was applied in the design tuning, the reliability was ensured by comparing the analysis results with the test results. This paper showed a process of developing an analysis model that can be utilized in the design and tuning stages.

CFD를 이용한 EPPR 밸브 유동력 특성 분석 및 시뮬레이션 (Simulation of EPPR Valve Flow Force Characteristic using CFD Analysis)

  • 윤주호;윤장원;손호연;김당주;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권1호
    • /
    • pp.14-22
    • /
    • 2017
  • Flow force is the additional unbalanced force acting on the valve spool by fluid flow, excluding the static pressure force that is offset on the spool land wall at the same magnitude. When designing the valve spool, it is assumed that the same average value of static pressure is applied to the inlet and outlet spool land wall in one chamber. However, the high velocity of the fluid flow by the inlet or outlet metering orifice creates unbalanced pressure distribution and generates additional force in the opposite direction to that of the solenoid attraction force. This flow force has a negative effect on the control performance of the EPPR valve, which needs to develop uniform output pressure along the entire spool control range. In this study, we developed a 3D model of the EPPR valve and conducted flow force characteristic analysis using CFD S/W (ANSYS FLUENT). The alleviated flow force model was derived by adjusting the design parameters of the spool notch.

SimulationX를 이용한 Remote Control Valve의 특성 분석에 관한 연구 (A Study on the Characteristic of Remote Control Valve Using Simulation X)

  • 정유성;정원지;이산성;이정민;최경신
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.78-84
    • /
    • 2017
  • Compared to other types of power, hydraulic energy is the most commonly used for heavy vehicles and ships because it has fewer location and space constraints, and its controllability can be maintained even under adverse conditions. Operators have controlled a main control valve of ship winches by pushing or pulling the lever, which is directly connected to the spool. However, because of the spatial arrangement, the importance of remote control valves has emerged. In this paper, experiments of the hysteresis characteristics were performed by analyzing the remote-control valve using a valve tester and RA2300. The validity was verified by comparing with the analytical model using SimulationX as the hydraulic analysis program. This study examined the effects of the spool's notch (Non, End-mill, and Spherical) and the effects of stiffness and pre-load of the spool spring on Spool stroke, open area, and hysteresis characteristics. It is considered possible to reduce the cost and the, trial and error process in designing remote-control valves in the future.

압력 비평형형 유압 베인 펌프의 토출 압력 맥동 특성 연구 (A Study on the Discharge Pressure Ripple Characteristics of the Pressure Unbalanced Vane Pump)

  • 장주섭
    • 한국정밀공학회지
    • /
    • 제26권4호
    • /
    • pp.55-63
    • /
    • 2009
  • This paper reports on the theoretical and experimental study of the pressure ripples in a pressure unbalanced type vane pump which have widespread use in industry. Because they can infinitely vary the volume of the fluid pumped in the system by a control. Pressure ripples occur due to the flow ripples induced by geometry of side plate, leakage flow, reverse flow from the outlet volume produced by pressure difference between pumping chamber and outlet volume when the pumping chamber connected with the outlet volume. In this paper, we measured the pressure variation of a pumping chamber, reaction force on a cam ring, the mathematical model for analyzing the pressure ripples which included vane detachment and fluid inertia effects in notch area has been presented, and was applied to predict the level and the wave form of the pressure ripples according to operating conditions.