• 제목/요약/키워드: 백프로파게이션 학습 알고리즘

검색결과 6건 처리시간 0.017초

신경회로망을 이용한 수도 증발산량 예측 -백프로파게이션과 카운터프로파게이션 알고리즘의 적용- (Estimating Evapotranspiration of Rice Crop Using Neural Networks -Application of Back-propagation and Counter-propagation Algorithm-)

  • 이남호;정하우
    • 한국농공학회지
    • /
    • 제36권2호
    • /
    • pp.88-95
    • /
    • 1994
  • This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration. Two neural networks were developed to forecast daily evapotranspiration of the rice crop with back-propagation and counter-propagation algorithm. The neural network trained by back-propagation algorithm with delta learning rule is a three-layer network with input, hidden, and output layers. The other network with counter-propagation algorithm is a four-layer network with input, normalizing, competitive, and output layers. Training neural networks was conducted using daily actual evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity, and pan evaporation. During the training, neural network parameters were calibrated. The trained networks were applied to a set of field data not used in the training. The created response of the back-propagation network was in good agreement with desired values and showed better performances than the counter-propagation network did. Evaluating the neural network performance indicates that the back-propagation neural network may be applied to the estimation of evapotranspiration of the rice crop. This study does not provide with a conclusive statement as to the ability of a neural network to evapotranspiration estimating. More detailed study is required for better understanding and evaluating the behavior of neural networks.

  • PDF

The Possibility of Neural Network Approach to Solve Singular Perturbed Problems

  • Kim, Jee-Hyun;Cho, Young-Im
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.69-76
    • /
    • 2021
  • 최근 특이성 교란 미적분 경계값 문제를 해결하기 위해 신경회로망 접근이 연구되고 있다. 특히 다양한 학습 알고리즘을 가진 백프로파게이션 알고리즘에 의해 훈련하는 피드-포워드 신경회로망의 이론적 모델이 제시되고 있으며, 딥러닝, 전이학습, 연합학습 등의 신경회로망 모델이 매우 빠르게 개발되고 있다. 본 논문의 목적은 특이성 교란 문제를 점근법적 방법과 함께 해결하기 위해 고도의 정확성과 속도를 가진 신경회로망 접근법에 관해 연구하는 것이다. 이를 위해 본 논문에서는 특이성 교란문제의 결과치와 교란되지 않은 문제의 결과치의 차이에 대해 신경회로망 접근 식을 사용하여 시뮬레이션 하였고 신경회로망 접근식의 효율성도 제시하였다. 결론적으로 특이성 교란 문제를 수식이 아닌 단순한 신경회로망 접근으로 효율적으로 해결할 수 있음을 제시한 것이 본 논문의 주요 기여사항이다.

신경망이론을 이용한 폴리우레탄 코팅포 촉감의 예측 (Using Neural Networks to Predict the Sense of Touch of Polyurethane Coated Fabrics)

  • 이정순;신혜원
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2001년도 춘계학술대회 논문집
    • /
    • pp.280-285
    • /
    • 2001
  • 폴리우레탄 코팅포의 촉감을 예측하기 위하여 신경망 이론이 사용되었다. 본 연구에서는 Neural Connection의 MLP(Multi Layer Perceptron)를 신경망 분석에 사용하였으며, 학습 알고리즘은 백프로파게인션(Backpropagation)을 이용하였다. 사용된 변수는 KES-FB시스템에서 측정된 17가지 역학적 특성치를 설명변수, 촉감치를 목표변수로 하였다. 폴리우레탄 코팅포의 촉감을 정확하게 예측할 수 있는 신경망 모델을 찾기 위해, 은닉층의 노드수를 8에서 34로 변화시켜 보았다. 또한 MLP적용함수로 선형함수, 비선형 시그모이드함수, 탄젠트 함수를 사용하여 목표변수를 예측하여 모형의 정확도를 살펴보았다. 구축된 신경망모델은 17가지 역학적특성치 자료를 이용하여 학습되었으며 학습 완료 후 학습에 사용되지 않은 시료를 시스템에 적용하여 학습된 신경망 시스템이 촉감을 평가하게 한 후 주관적으로 평가된 촉감치와 비교하여 본 시스템의 판단의 정확성을 평가하도록 하였다. 은닉층의 노드수와 MLP적용함수는 촉감예측에 영향을 미치는 것으로 나타났는데, 촉감 예측에 가장 적절한 모형은 MLP 적용함수가 탄젠트 함수이고 노드수가 22인 것으로 나타났다. 신경망을 통한 폴리우레탄 코팅포의 촉감 예측력은 선행연구에서 이용된 통계적 방법보다 높게 나타나 폴리우레탄 코팅포의 촉감예측에 신경망의 이용은 효과적인 것으로 밝혀졌다.

  • PDF

부분방전 패턴의 인식 (Recognition of Partial Discharge Patterns)

  • 이준호;이진우
    • 조명전기설비학회논문지
    • /
    • 제14권2호
    • /
    • pp.8-17
    • /
    • 2000
  • 본 연구에서는 부분방전의 인식을 위한 두가지 접근법을 제안하였다. 첫 번째로는 백프로파게이션 알고리즘을 적용한 신경회로망이구 두 번째로는 두 연산자 백터간의 사이각 계산이다. 부분방전신호는 IEC(b), 침대평판 및 CIGRE method II 등 3가지 전극계로부터 각각 검출되었다. 신경회로망과 벡터의 사이각을 이용한 방법 모두 이리 학습된 패턴에 대해서는 양호한 인식능력을 보였다. 그려고 사용되는 연산자의 수가 미학습패턴의 인식능력에 큰 영향올 미쳤다.

  • PDF

대구지역 퇴적암의 일축압축강도 예측을 위한 인공신경망 적용 (Application of Artificial Neural Networks for Prediction of the Unconfined Compressive Strength (UCS) of Sedimentary Rocks in Daegu)

  • 임성빈;김교원;서용석
    • 지질공학
    • /
    • 제15권1호
    • /
    • pp.67-76
    • /
    • 2005
  • 암석의 물리적 특성과 슈미트반발경도 결과로부터 일축압축강도를 예측하기 위한 인공신경망 이론의 적용과 최적 모델 구성에 대하여 연구하였다. 대구지 역의 퇴적암(사암, 셰일) 시료 55개가 사용되었으며, 이들 중 인공신경망 학습을 위하여 45개가 사용되었고 학습결과의 검증을 위하여 10개의 시료가 이용되었다. 인공신경망에 의한 추산 결과와 비교하기 위하여 통계적 방법을 통한 회귀분석을 통하여 역학특성의 상관식을 도출하였으며, 인공신경망의 유효성 검증을 위하여 모델 구축 시 에 사용하지 않은 새로운 자료에 대해 예측을 실시하고 통계적 방법에 의한 결과 및 실내 시험 결과와 비교하였다. 본 연구에 사용한 인공신경망모델에는 백프로퍼게이션 학습 알고리즘(back-propagation teaming algorithm)이 적용되었으며, 인공신경망의 학습효율 및 예측능력에 영향을 미치는 입ㆍ출력층 및 은닉층의 구조, 학습율, 시스템오차율 등을 달리 하며 학습을 시행하였다. 그 결과 통계적 분석보다는 인공신경망의 학습에 의한 예측결과가 더 나은 예측능력을 나타냈다.

은닉노드의 특징 값을 기반으로 한 최적신경망 구조의 BPN성능분석 (Performance Analysis of Optimal Neural Network structural BPN based on character value of Hidden node)

  • 강경아;이기준;정채영
    • 한국컴퓨터정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.30-36
    • /
    • 2000
  • 은닉노드는 주어진 문제에서 입력패턴(input pattern)들의 특징을 구분해주는 중요한 역할을 한다. 이 때문에 최적의 은닉노드 수로 구성된 신경망 구조가 성능에 가장 큰 영향을 주는 요인으로 중요성이 대두되고 있다. 그러나 역전파(back-propagation) 학습 알고리즘을 기반으로 하여 은닉노드 수를 결정하는데는 문제점이 있다. 은닉노드 수가 너무 적게 지정되면 주어진 입력패턴을 충분히 구분할 수 없게 되어 완전한 학습이 이루어지지 않는 반면, 너무 많이 지정하면 불필요한 연산의 실행과 기억장소의 낭비로 과적응(overfitting)이 일어나 일반성이 떨어져 인식률이 낮아지기 때문이다. 따라서 본 논문에서는 백 프로퍼게이션 알고리즘을 이용하여 학습을 수행하는 다층 신경망의 학습오차 감소와 수렴율 개선을 위하여 신경망을 구성하는 매개변수를 가지고 은닉노드의 특징 값을 구하고, 그 값은 은닉노드를 제거(pruning)하기 위한 평가치로 사용된다. 구해진 특징 값 중 최대 값과 최소 값을 갖는 노드를 감소(pruning)대상에서 제외하고 나머지 은닉노드 특징 값의 평균과 각 은닉노드의 특징 값을 비교하여 평균보다 작은 특징 값을 갖는 은닉노드를 pruning시키므로서 다층 신경망의 최적 구조를 결정하여 신경망의 학습 속도를 개선하고자 한다.

  • PDF