• Title/Summary/Keyword: 백악기 화산암과 퇴적암

Search Result 42, Processing Time 0.019 seconds

Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area (의성(義城)지역 전흥(田興) 및 옥산(玉山) 열수(熱水) 연(鉛)-아연(亞鉛)-동(銅) 광상(鑛床)에 관한 광물학적(鑛物學的)·지화학적(地化學的) 연구(硏究))

  • Choi, Seon-Gyu;Lee, Jae-Ho;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.417-433
    • /
    • 1992
  • Lead-zinc-copper deposits of the Jeonheung and the Oksan mines around Euiseong area occur as hydrothermal quartz and calcite veins that crosscut Cretaceous sedimentary rocks of the Gyeongsang Basin. The mineralization occurred in three distinct stages (I, II, and III): (I) quartz-sulfides-sulfosalts-hematite mineralization stage; (II) barren quartz-fluorite stage; and (III) barren calcite stage. Stage I ore minerals comprise pyrite, chalcopyrite, sphalerite, galena and Pb-Ag-Bi-Sb sulfosalts. Mineralogies of the two mines are different, and arsenopyrite, pyrrhotite, tetrahedrite and iron-rich (up to 21 mole % FeS) sphalerite are restricted to the Oksan mine. A K-Ar radiometric dating for sericite indicates that the Pb-Zn-Cu deposits of the Euiseong area were formed during late Cretaceous age ($62.3{\pm}2.8Ma$), likely associated with a subvolcanic activity related to the volcanic complex in the nearby Geumseongsan Caldera and the ubiquitous felsite dykes. Stage I mineralization occurred at temperatures between > $380^{\circ}C$ and $240^{\circ}C$ from fluids with salinities between 6.3 and 0.7 equiv. wt. % NaCl. The chalcopyrite deposition occurred mostly at higher temperatures of > $300^{\circ}C$. Fluid inclusion data indicate that the Pb-Zn-Cu ore mineralization resulted from a complex history of boiling, cooling and dilution of ore fluids. The mineralization at Jeonheung resulted mainly from cooling and dilution by an influx of cooler meteoric waters, whereas the mineralization at Oksan was largely due to fluid boiling. Evidence of fluid boiling suggests that pressures decreased from about 210 bars to 80 bars. This corresponds to a depth of about 900 m in a hydrothermal system that changed from lithostatic (closed) toward hydrostatic (open) conditions. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=2.9{\sim}9.6$ per mil) indicate that the ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids was ${\approx}8.6$ per mil. This ${\delta}^{34}S_{{\Sigma}S}$ value is likely consistent with an igneous sulfur mixed with sulfates (?) in surrounding sedimentary rocks. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ variation of stage I ore fluids differed between the two mines as follows: the $fs_2$ of ore fluids at Jeonheung changed with decreasing temperature constantly near the pyrite-hematite-magnetite sulfidation curve, whereas those at Oksan changed from the pyrite-pyrrhotite sulfidation state towards the pyrite-hematite-magnetite state. The shift in minerals precipitated during stage I also reflects a concomitant $fo_2$ increase, probably due to mixing of ore fluids with cooler, more oxidizing meteoric waters. Thermodynamic consideration of copper solubility suggests that the ore-forming fluids cooled through boiling at Oksan and mixing with less-evolved meteoric waters at Jeonheung, and that this cooling was the main cause of copper deposition through destabilization of copper chloride complexes.

  • PDF

Analysis of Aquifer Test Data in Fractured Aquifers and the Application of the Generalized Radial Flow (균열암반에서의 양수시험자료 해석과 일반 방사상 유동모델의 적용성 연구)

  • Seong Hyeonjeong;Kim Yongie;Lee Chul-Woo;Kim Kue-Young;Woo Nam-Chil
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.177-185
    • /
    • 2005
  • Data from 122 pumping tests were obtained from 100 boreholes in granites, volcanic rocks, metamorphic rocks, and Cretaceous and Tertiary sedimentary rocks, and then were analyzed using AQTESOLV. Results from 86 of the 122 tests ($71\%$) have an analytical solution corresponding to Theis (1935), Cooper-Jacob (1946), Papadopulos-Cooper (1967), Hantush (1962), Moench (1985), or Hantush-Jacob (1955), whereas the remaining 36 results ($29.5\%$) do not correspond to any of the analytical methods. Of the 86 results, only 17 match the Theis and Cooper-Jacob methods, indicating that the basic methods fer pumping test analysis are useful far only $14\%$ of the total data. This suggests that analytical solutions derived using leaky boundary conditions are appropriate for the analysis of pumping test data in fractured aquifers in this study. Furthermore, the results show the importance of carefully selecting an appropriate model for the analysis of pumping test data. Results from the 122 pumping tests were also analyzed using the GRF model. Using the Barker method, the results show that 77 of the 122 tests ($63\%$) have dimensions ranging between 1.1-2.9. Of these 77 solutions, ($39(44.2{\%})$) have a fractional dimension of 1.1-1.9, ($26(6.5{\%})$) show 2-dimensional radial flow also applicable to the Theis method, and ($38(49.3{\%})$) have dimensions of 2.1-2.9. The results show that groundwater flows according to a fractional flow dimension in fractured aquifers.