• Title/Summary/Keyword: 백서 사구체 상피세포

Search Result 9, Processing Time 0.017 seconds

Radiation Induced Changes in the Expression of Fibronectin, Pai-1, MMP in Rat Glomerular Epithelial Cell (백서 사구체 상피세포에서 방사선에 의한 Fibronectin, Pai-1, MMP 발현의 변화)

  • Park Woo-Yoon;Kim Won-Dong;Zheng Ying;Ha Tae-Sun;Kim Jae-Sung;Cho Moon-June
    • Radiation Oncology Journal
    • /
    • v.24 no.1
    • /
    • pp.58-66
    • /
    • 2006
  • Purpose: Renal irradiation can lead to the development of radiation nephropathy, and this is characterized by the accumulation of extracellular matrix and final fibrosis. To determine the possible role of the glomerular epithelial cell, the radiation-induced changes in the expression of its genes associated with the extracellular matrix were analyzed. Materials and Methods: Rat glomerular epithelial cells (GEpC) were irradiated with a single dose of 0, 2, 5, 10 and 20 Gy with using 6 MV LINAC (Siemens, USA), and the samples were collected 6, 24, 48 and 72 hours post-irradiation, respectively. Northern blotting, western blotting and zymography were used to measure the expression level of fibronectin (Fn), plasminogen activator inhibitor-1 (Pai-1), matrix metalloproteinases-2, 9 (MMP-2, 9), tissue inhibitor of metalloproteinase-2 (TIMP-2), tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA). Results: Irradiation with a single dose of 10 Gy resulted in a significant increase in Fn mRNA since 24 hours post-irradiation, and a single dose of 5 and 10 Gy significantly increased the Fn immunoreactive protein measured 48 hours post-irradiation. An increase in Pai-1 mRNA and protein was also observed and especially, a single dose of 10 Gy significantly increased the mRNA measured 24 and 48 hours post-irradiation. The active MMP-2 measured 24 hours post-irradiation slightly increased in a dose dependent manner, but this increase did not reach statistical significance. The levels of MMP-9, TIMP-2, t-PA and u-PA appeared unaltered after irradiation. Conclusion: Irradiation of the glomerular epithelial cells altered the expression of genes associated with the extracellular matrix, implying that the glomerular epithelial cell may be involved in the development of radiation nephropathy.

Effect of Puromycin Aminonucleoside on Podocyte P-Cadherin (Puromycin aminonucleoside의 사구체 족세포 P-cadherin에 대한 영향)

  • Ha, Tae-Sun
    • Childhood Kidney Diseases
    • /
    • v.17 no.2
    • /
    • pp.79-85
    • /
    • 2013
  • Purpose: To test whether the expression of P-cadherin, a component of slit diaphragms between podocyte foot processes, would be altered by puromycin aminonucleoside (PAN) in a cultured podocyte in vitro. Methods: Rat glomerular epithelial cells (GEpC) were cultured with various concentrations of PAN. The distribution of P-cadherin was examined with a confocal microscope. Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to measure the change in P-cadherin expression. Results: This study found that P-cadherin was concentrated in the inner and peripheral cytoplasm with high concentrations of PAN under immunofluorescence views. Western blotting of GEpC revealed that PAN induced a decrease of P-cadherin in dose- and time-dependent manners. A high dose ($50{\mu}g/mL$) of PAN decreased P-cadherin expression by 21.9% at 24 h (P <0.05) and 31.9% at 48 h (P <0.01) compared to those without PAN. In RT-PCR, high concentrations ($50{\mu}g/mL$) of PAN also decreased P-cadherin mRNA expression, similar to protein suppression, by 23.5% at 48 h (P <0.05). Conclusion: Podocytes exposed to PAN in vitro concentrated P-cadherin internally, and reduced P-cadherin mRNA and protein expression. This could explain the development of proteinuria in experimental PAN-induced nephropathy.

High Glucose and Advanced Glycosylation Endproducts(AGE) Modulate the P-cadherin Expression in Glomerular Epithelial Cells(GEpC) (배양한 사구체 상피세포에서 고농도 당과 후기 당화합물에 의한 P-cadherin의 변화)

  • Ha Tae-Sun;Koo Hyun-Hoe;Lee Hae-Soo;Yoon Ok-Ja
    • Childhood Kidney Diseases
    • /
    • v.9 no.2
    • /
    • pp.119-127
    • /
    • 2005
  • Purpose : Podocytes are critical in maintaining the filtration barrier of the glomerulus and are dependent on the integrity of slit diaphragm(SD) proteins including nephrin, p-cadherin, and others. Diabetic proteinuric condition demonstrates defects in SD molecules as well as ultrastructural changes in podocytes. We examined the molecular basis for this alteration of SD molecules especially on P-cadherin as a candidate regulating the modulation of pathogenic changes in the barrier to protein filtration. Methods : To investigate whether high glucose and AGE induce changes in SD, we cultured rat GEpC under normal(5 mM) or high glucose(30 mM) and AGE- or BSA-added conditions and measured the change of P-cadherin expression by Western blotting and RT-PCR. Results : We found that administration of high glucose decreased the P-cadherin production significantly in the presence or absence of AGE by Western blotting. In RT-PCR high glucose with or without AGE also significantly decreased the expression of P-cadherin mRNA compared to those of controls. Such changes were not seen in the osmotic control. Conclusion : We suggest that high glucose with or without AGE suppresses the Production of P-cadherin at the transcriptional level and that these changes nay explain the functional changes of SD in diabetic conditions. (J Korean Soc Pediatr Nephrol 2005;9:119-127)

  • PDF

Effect of Unilateral Renal Perfusion of Cyclosporine and Mitomycin on Rat's Kidney (Cyclosporine과 Mitomycin의 일측성 신관류로 초래되는 백서 신병변에 관한 연구)

  • Baek Seung In;Lim Hyun Suk;Shin Weon Hye;Ko Cheol Woo;Koo Ja Hoon;Kwak Jung Sik
    • Childhood Kidney Diseases
    • /
    • v.2 no.2
    • /
    • pp.138-144
    • /
    • 1998
  • Purpose : The use of cyclosporine and mitomycin in various immunologic or neoplastic disorders has been known to cause wide-ranged nephrotoxic effects including thrombotic microangiopathy. However, the mechanism of nephrotoxicity of these drugs has not been studied adequately, so that present experimental study has been undertaken to find out whether these drugs can cause direct damage to the kidney and to clarify the pathogenetic mechanism of nephrotoxic effect of these drugs. Materials and methods : Sprague-Dawley rats weighing 250-300 gm were used for experimental animals and unilateral renal perfusion technique, modified from the method described by Hoyer et al was used. Isolation of left kidney from systemic circulation was made by clamping aorta and left renal vein and a hole was punctured in the anterior wall of the left renal vein. Cyclosporine (2.5 mg in 4 ml solution) and mitomycin (1.6 mg in 4ml solution) were infused through left renal artery and normal saline was used in control rats. Forty-eight hours after infusion of the drugs, animals were sacrificed and left kidney removed and processed for histologic examination. Total ischemic time of left kidney was less than 15 minutes: Results : Cyclosporine-perfused group showed severe swelling of glomerular endothelial ceil along with swelling of glomerular epithelial cell and interstitial vascular endothelial cell. Mitomycin-perfused group also showed severe swelling of glomerular endothelial and epithelial cells. And in addition to these findings, they demonstrated platelets aggregation, swelling and degranulation of platelets and fibrin accumulation in some of the capillaries, indicating occurrance of thrombotic microangiopathy. Conclusion : present experiment indicates that cyclosporine and mitomycin can cause direct toxic injury to renal endothelial cell. And this direct toxic damage to endothelial cell seems to be an important initiating event for the development of thrombotic microangiopathy.

  • PDF

Effects of Antihypertensive Drugs on Renal Function and Glomerular Morphology in Chronic Renal Failure Rats (만성신부전 백서에서 항고혈압제의 종류에 따른 신부전의 진행과 사구체의 형태학적 변화)

  • Hong Sung-Jin;Kim Kyo-Sun;Kim Pyung-Kil;Park Kyung-Hwa;Kim Kee-Hyuck
    • Childhood Kidney Diseases
    • /
    • v.6 no.2
    • /
    • pp.169-177
    • /
    • 2002
  • Purpose: Hypertension accelerates the progression of chronic renal disease, whether it results from, or causes, the renal disease. Therefore, the control of hypertension is one of the important factors that retard the rate of renal deterioration. We compared the effects of different antihypertensive agents on renal function and glomerular morphology In subtotal nephrectomized rats. Materials and methods: After induction of chronic renal failure with 5/6 nephrectomy, the rats were divided into three groups; control group (Group C), enalapril group (Group E), and nicardipine group (Group N). Systolic blood pressure was measured by tail cuff method every 4 weeks until 12 weeks after nephrectomy. At 12 weeks after nephrectomy, all rats were placed in metabolic cages for 24 hour urine collections to measure urinary protein and creatinine excretion. After urine collection and blood sampling for serum creatinine, all rats were sacrificed. The renal tissue was processed for morphometric study with light microscope and electron microscope. Results: 1. The blood pressure of Group C increased progressively, but both enalapril and nicardipine prevented the development of hypertension, and the two drugs were equally effective in maintaining normal blood pressure throughout the study. 2. Twenty-four hour urinary protein excretion was lower in Group E compared to Group C and Group N 3. Mesangial expansion score in both treated groups were significantly lower than the control group. Mean glomerular volume in Group E was significantly reduced compared to Group C and Group N. There was no significant difference in mean glomerular volume between Group C and Group N. 4. There was no significant difference in podocyte structural changes, estimated by filtration slit length density, among control, enalapril and nicardipine treated groups. Conclusion: Control of hypertension with enalapril or nicardipine afforded considerable protection from mesangial expansion in the rat remnant kidney model. But protein excretion and glomerular growth were significantly reduced in Group E compared to Group N. There was no significant difference in podocyte structural changes among the 3 groups.

  • PDF

Effects of High Glucose and Advanced Glycosylation Endproducts (AGE) on ZO-1 Expression in cultured Glomerular Epithelial Cells (GEpC) (당과 후기당화합물에 의한 사구체 상피세포 ZO-1 발현의 변화)

  • Lee Jin-Seok;Lee Hae- Soo;Yoon Ok-Ja;Ha Tae-Sun
    • Childhood Kidney Diseases
    • /
    • v.8 no.2
    • /
    • pp.138-148
    • /
    • 2004
  • Purpose: Regardless of the underlying diseases, the proteinuric condition demonstrates ultrastructural changes in podocytes with retraction and effacement of the highly specialized interdigitating foot processes. We examined the molecular basis for this alteration of the podocyte phenotypes, including quantitative and distributional changes of ZO-1 protein as a candidate contributing to the pathogenic changes in the barrier to protein filtration. Methods: To investigate whether high glucose and advanced glycosylation endproduct(AGE) induce podocyte cytoskeletal changes, we cultured rat GEpC under 1) normal glucose(5 mM=control) or 2) high glucose(30 mM) or 3) AGE-added or 4) high glucose plus AGE-added conditions. The distribution of ZO-1 was observed by confocal microscope and the change of ZO-1 expression was measured by Western blotting and RT-PCR. Results: By confocal microscopy, we observed that ZO-1 moves from peripheral cytoplasm to inner actin filaments complexes in both AGE-added and high glucose condition. In Western blotting, high glucose or AGE-added condition decreased the ZO-1 protein expression by 11.1%(P>0.05) and 2.3%(P>0.05), respectively compared to the normal glucose condition. High glucose plus AGE-added condition further decreased ZO-1 protein expression to statistically significant level(12%, P<0.05). No significant change was seen in the osmotic control. In RT-PCR, high glucose plus AGE-added condition significantly decreased the expression of ZO-1 mRNA by 12% compared to normal glucose condition. Conclusion: We suggest that both high glucose and AGE-added condition induce the cytoplasmic translocation and suppresses the production of ZO-1 at transcriptional level and these changes may explain the functional changes of podocytes in diabetic conditions.

  • PDF

The Change of Podocyte ${\beta}$-Catenin by Puromycin Aminonucleoside (Puromycin aminonucleoside 투여에 따른 사구체 족세포 ${\beta}$-catenin의 변화)

  • Choi, Ji-Young;Ahn, Eun-Mi;Park, Hye-Young;Shin, Jae-Il;Ha, Tae-Sun
    • Childhood Kidney Diseases
    • /
    • v.15 no.2
    • /
    • pp.138-145
    • /
    • 2011
  • Purpose : To test whether the expression of ${\beta}$-catenin, a component of podocyte as a filtration molecule, would be altered by puromycin aminonucleoside (PAN) in the cultured podocyte in vitro. Methods : We cultured rat glomerular epithelial cells (GEpC) with various concentrations of PAN and examined the distribution of ${\beta}$-catenin by confocal microscope and measured the change of ${\beta}$-catenin expression by Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Results :We found that ${\beta}$-catenin relocalized from peripheral cytoplasm to inner cytoplasm, therefore, intercellular separations were seen in confluently cultured cells by high concentrations of PAN in immunofluorescence views. In Western blotting of GEpC, PAN ($50{\mu}g/mL$) decreased ${\beta}$-catenin expression by 34.9% at 24 hrs and 34.3% at 48 hrs, compared to those in without PAN condition (P<0.05). In RT-PCR, high concentrations ($50{\mu}g/mL$) of PAN also decreased ${\beta}$-catenin mRNA expression similar to protein suppression by 25.4% at 24 hrs and 51.8% at 48 hrs (P<0.05). Conclusion : Exposure of podocytes to PAN in vitro relocates ${\beta}$-catenin internally and reduces ${\beta}$-catenin mRNA and protein expression, which could explain the development of proteinuria in experimental PAN-induced nephropathy.

The Effect of $\alpha$-tocopherol in Puromycin Aminonucleoside Induced Nephropathy in Rats (Puromycin Aminonucleoside 투여로 초래된 백서신증에 $\alpha$-tocopherol이 미치는 영향)

  • Seo Hyung Ho;Jung Tae Sung;Lee Eun Sil;Shin Son Moon;Park Yong Hoon;Kim Yong Jin
    • Childhood Kidney Diseases
    • /
    • v.3 no.1
    • /
    • pp.35-41
    • /
    • 1999
  • Purpose The single administration of PAN(Puromycin-Aminonudeoside) to rats results in nephropathy that are similar to human minimal change nephrotic syndrome. Recently several studies indicate the pathophyslological importance of oxygen free radicals in rats with PAN-induced nephrosis. This study was conducted to evaluate the effect of $\alpha$-tocopherol, an oxygen free radical scavenger, on the histologic and biochemical changes of PAN-induced nephrosis in rats. Methods : Twenty-one Sprague-Dawley rats weighing 180-300 gm were divided into 3 groups. In group I (control group), the rats were given saline intraperitoneally for 12 days, in group II the rats were given PAN 7.5mg/100g of body weight intravenously one time and group III PAN intravenously, followed by $\alpha$-tocopherol 0.5 mg/100g of body weight jntramuscularly for 12 days. Twenty four hour urinary protein and creatinine excretion were measured on day 0, 5, 11 and 18. On the 18th day, rats were sacrificed for the determination of total serum protein, albumin and cholesterol levels. To estimate renal injuries by oxygen free radical, lipid peroxide concentration and reduced glutathione were measured in renal cortex. Histological examination in rat glomerular lesions were performed. Results : From the 5th days of PAN administration, urine protein/creatinine of group II and III were significantly increased compared the group I (P<0.05). But, urine protein/creatinine of group III was significantly lower than group II at 18th days (P<0.05). Total serum protein and albumin of group II were significantly lower than those of group III (P<0.05). Serum cholesterol of group II was significantly higher than that of group III (P<0.05). Lipid peroxide and reduced glutathione in renal cortex of group II were significantly higher than that of group I and III (P<0.05). Electron microscopic strudies of group II showed the loss of epithelial foot processes, but in group III showed preservation of epithelial foot processes. Conclusion : PAN-induced nephropathy was ameliorated significant recovery of foot process change and reduction of the urinary protein excretion by antioxidant, $\alpha$-tocopherol.

  • PDF

Alteration of Growth Factor Expression after Acute Ischemic Renal Injury (급성 허혈성 신손상 후 여러 성장인자 발현의 변화)

  • Koe, Yang Sim;Lee, Soo Yeon;Kim, Won;Cho, Soo Chul;Hwang, Pyoung Han;Kim, Jung Soo;Lee, Dae-Yeol
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.687-694
    • /
    • 2003
  • Purpose : Regeneration and repair after ischemic renal injury appears to be modulated by circulating or locally produced growth factors. This study examined the changes of serum insulin like growth factor(IGF-I) and renal expression of IGF-I and II, vascular endothelial growth factor(VEGF), transforming growth $factor-{\beta}$($TGF-{\beta}$), and connective tissue growth factor(CTGF) during the active regeneration period after acute ischemic injury. Methods : Sera and kidney tissue samples(whole kidney, cortex, outer medullae and inner medullae) were obtained before and after one, three, five and seven days of 40 minutes bilateral renal pedicle clamping. Acute renal failure was assessed by measuring the concentration of serum creatinine. Serum IGF-I level was measured by radioimmunoassay. The mRNA expression in kidney was measured by RT-PCR. The distribution of IGF-I and CTGF was detected by immunohistochemistry. Resuts : Serum IGF-I concentration after one day following acute ischemic renal injury was significantly decreased compared to preischemic value. The mRNA levels of IGF-I, IGF-II, $TGF-{\beta}1$ and VEGF in whole kidney were temporally decreased on day one of ischemic injury. IGF-I and IGF-II expressions in outer medullae were significantly decreased on day one after ischemic injury. $TGF-{\beta}1$, CTGF and VEGF expressions were markedly decreased in medullae after one day of ischemic injury compared to other kidney sections. IGF-I was markedly decreased in cortical tubules on day one of uremic rat. CTGF was markedly increased on tubule within three days of ischemic injury. Conclusion : These findings suggest that IGFs, $TGF-{\beta}1$ and CTGF may involve in the pathogenesis or the recovery from acute ischemic renal injury.