• Title/Summary/Keyword: 백색LED

Search Result 262, Processing Time 0.03 seconds

Applications of Light-emitting Properties and Functional Selective-wave Lightings of LED Lamp (LED 램프의 발광 특성과 선택파장 기능성 응용)

  • Soh, Dea-Wha;Hong, Sang-Jeen;Park, Jong-Dae;Hah, Tae-Min;Kim, Ji-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.856-859
    • /
    • 2012
  • In order to cultivate vegetables in plastic greenhouse or housing facilities it was investigated properties of radiation and functions of LED lamp and proposed application possibility. Against presently existing method of obtaining blue and red colored wave lights needed to plants growing, it was used white LED and red LED to investigate growing conditions as well as brightness and color sense with working condition. And also it was presented lighting system of selective wave functions to promote plant growth.

  • PDF

Regulation of Acid Contents in Kiwifruit Irradiated by Various Wavelength of Light Emitting Diode during Postharvest Storage (다양한 파장의 LED 조사를 통한 참다래 과실의 산 함량 조절)

  • Baek, Kwang-Hyun;Jang, Myung-Hwan;Kwack, Yong-Bum;Lee, Se-Weon;Yun, Hae-Keun
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.88-94
    • /
    • 2010
  • The physiological roles of various wavelength of light emitting diode (LED) on ‘Hayward’ kiwifruit experiencing after-ripening were investigated. Various wavelengths from LED light source were irradiated on kiwifruits kept in plastic bags or under open air at $25^{\circ}C$. During two weeks of storage, firmness of Hayward kiwifruits was decreased by $25^{\circ}C$ treatment than by $4^{\circ}C$ treatment. In the $25^{\circ}C$ storage condition, the firmness of kiwifruits was decreased by the treatment of 380 nm UV and 470nm white LED light source. Sweetness of kiwifruits treated with 380 nm UV LED and dark condition at $25^{\circ}C$ increased higher than $15^{\circ}$Brix. The acidity of kiwifruits under open air was decreased 52% by incubating at $25^{\circ}C$ with 660 nm red LED treatment. The acidity of kiwifruits in plastic bags was decreased 52.6, 55.6, 52.8% by the treatment of 440 nm blue, 470 nm white and 660 nm red LED light source, respectively, compared to that of kiwifruits incubated in darkness at $25^{\circ}C$. Decreased acidity irradiated by 660 nm red LED light source can be applied for regulating periods of the kiwifruit after-ripening process. LED light sources emit very narrow wavelength with a power-saving mode, therefore, the usage of these LED light source for regulating the after-ripening process can be classified as a clean biotechnology producing safe and environment-friendly kiwifruits.

Indoor Position Estimation Using Stereo Image Sensor and LEDs (스테레오 이미지 센서와 LED 조명을 이용한 실내 측위)

  • Moon, Myoung-Geun;Choi, Su-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.755-762
    • /
    • 2014
  • In recent year, along with the rapid development of LED technology, many applications using LEDs with Visible Light Communication(VLC) have been researched. Since it is easy to provide LOS communication environment along with cheap deployment cost, the indoor positioning system based on VLC has been actively studied. In this paper, we propose an accurate indoor positioning algorithm using a stereo image sensor and white-light LEDs with the visible light communication. Indoor white-light LEDs are located at the ceiling of a room and broadcast their position information by VLC technology. Mobile receiver with stereo image sensor receives LED position information by VLC and estimates its position and angle information. Simulation results are given to show the efficiency of proposed indoor positioning algorithm.

Effects of Fluorescent Light and Light-Emitting Diodes on Leaf Morphology, Growth and Antioxidant Capacity of Salvia plebeia (형광등과 발광다이오드 광원이 '곰보배추'의 생육, 엽형 및 항산화능에 미치는 영향)

  • Park, Heon;Yu, Yeon Jung;Choi, Eun Young
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.208-214
    • /
    • 2017
  • This study aimed to determinate the effect of fluorescent light and light-emitting diodes on the leaf morphology, growth and antioxidant capacity of Salvia plebeia. The plants were grown for 56 days after transplanting (DAT) under the fluorescent light (FL) and LEDs (White, Red and Blue (R+B, ratio 2:1), Blue, Red LED) under the same light intensity and photoperiod ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours). Leaf length, width and number of Salvia plebeia at the 56 DAT were significantly higher under the FL and red LED, and lower in the RB LED and white LED. The highest fresh and dry weights of shoot and leaf area were observed in the red LED, followed by the FL and blue LED, and the lowest in the RB LED and white LED. After 21 DAT, leaf apinasty symptom was appeared in plants grown under red LED and RB LED. The chlorophyll content was lower in the red LED. The specific leaf weight, the ratio of leaf dry weight to area, was higher in the blue LED, and lowest in the FL. No significant difference in DPPH radical scavenging activity of Salvia plebeia under the different light sources. All the integrated results suggest that the FL light is a proper light conditions for a closed cultivation of Salvia plebeia.

Studies on LED Wavelength to Enhance Growth and Bio-active Compounds of Carrots (당근의 성장과 생리활성물질 함량을 증진시키는 LED 파장에 관한 연구)

  • Kang, Suna;Kim, Min-Jung;Kim, Bong Soo;Park, Sunmin
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.131-137
    • /
    • 2015
  • Commercial greenhouse plant factories are highly efficient for controlling external factors such as floods, drought, insects, air pollution etc. However, they require substantial startup & maintenance investments and experimental research to optimize production. These facilities are especially useful for urban farming where high efficiency in small spaces is required. In this study, we investigated whether light emitting diode (LED) lights with mixed dominant wavelengths (650 nm : 550 nm : 445 nm=8:1:1, 650 nm : 445 nm=6:4) can increase the growth rate and bio-active compound content of carrots in comparison to that of fluorescent light (FL). LED with mixed wavelength (650 nm : 550 nm : 445 nm=8:1:1) increased the total weight and root circumference of carrots compared to FL. However, ${\beta}$-carotene contents were not significant in LED (650 nm : 550 nm : 445 nm=8:1:1). However, LED (650 nm : 445 nm=6:4) increased the ${\beta}$-carotene (FL: 7.27, LED: 10.48 mg/g ${\beta}$-carotene dried weight). These results suggested that using LED light at the ideal wavelength, at the antithesis color of the plant, might enhance plant growth and bio-active compound contents.