• Title/Summary/Keyword: 백색LED

Search Result 263, Processing Time 0.028 seconds

Growth of Lettuce in Closed-Type Plant Production System as Affected by Light Intensity and Photoperiod under Influence of White LED Light (밀폐형 식물생산시스템에서 백색 LED를 이용한 광도와 광주기에 따른 상추의 생장)

  • Park, Ji Eun;Park, Yoo Gyeong;Jeong, Byoung Ryong;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.228-233
    • /
    • 2013
  • This study was conducted to examine the effect of light intensity and photoperiod of white LEDs as the artificial light source on the growth of leaf lettuce (Lactuca sativa L.) 'Seonhong Jeokchukmyeon' in a closed-type plant production system. Seedlings, transplanted at a density of $20cm{\times}20cm$ in a completely randomized design, were grown under white LEDs (FC Poibe Co. Ltd., Korea), at one of the 3 light intensities (100, 200, or $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$), and each with one of 3 photoperiods [12/12, 18/6, or 24/0 (Light/Dark)]. Plants were cultured for 22 days under the condition of $21{\pm}2^{\circ}C$, $60{\pm}10%$ RH, and $400{\pm}50{\mu}mol{\cdot}mol^{-1}\;CO_2$. The greatest leaf length and width, fresh and dry weights, and total anthocyanin content were obtained in the 24/0 photoperiod, regardless of the light intensity. Length of the longest root, fresh and dry weights, and number of leaves were greater in light intensity of $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ than 100 or $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Chlorophyll value was the greatest in the photoperiod 12/12 than 18/6 or 24/0. The results obtained suggest that plant grew the best kept by light intensity at 200 or $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and photoperiod of 12/12 or 18/6.

Development of Portable Astral Light using the High Power 3-Color LEDs (고출력 3색 LED를 이용한 휴대용 무영등의 개발)

  • Yu, Seong-Mii;Cheon, Min-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1111-1117
    • /
    • 2011
  • We was designed the portable LED light which can shadowless shooting and developed using a high-power LED that medical attention as a new lighting components for structural confirmation of oral dental area, medical and surgical lesions in the local area. LED which applied to the development, was used the 3-color LEDs for possible of implement a variety of colors and adjusted the light intensity. It is being magnified of delicacy expressiveness and three-dimensional for tone of the subject-specific. It has been developed a highly efficient light module that LED is used to consider the electrical characteristics and optical properties. SMPS has We was designed the portable LED light which can shadowless shooting and developed using a high-power LED that medical attention as a new lighting components for structural confirmation of oral dental area, medical and surgical lesions in the local area. LED which applied to the development, was used the 3-color LEDs for possible of implement a variety of colors and adjusted the light intensity. It is being magnified of delicacy expressiveness and three-dimensional for tone of the subject-specific. It has been developed a highly efficient light module that LED is used to consider the electrical characteristics and optical properties. SMPS has produced for use in mobile that can be driven at low voltage. In addition, it was also possible to implement a variety of colors from monochromatic Light to polychromatic light using by PWM control method and were available 32,768.

Effect of LED Light Wavelength on Chrysanthemum Growth (LED광 파장이 국화생육에 미치는 영향)

  • Im, Jae Un;Yoon, Yong Cheol;Seo, Kwang Wook;Kim, Kyu Hyeong;Moon, Ae Kyung;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • In this study, I was focusing on LED (Light Emitting Diode) light effect in growth of chrysanthemum. For this reason, I formed six monochromatic lights (red 650 nm, 647 nm, 622 nm, blue 463 nm, 450 nm, white), six mixed lights sources red : blue (9 : 1, 8 : 2, 7 : 3, 6 : 4, 5 : 5) and 3 control beds in light sources ratio between rad : blue (8 : 2) including sun light. It was totally 15 control beds. Depending on light investigation time in growth, 6/6 (on/off) was highest in the length of plant, the number of leaves, the fresh dry and leaf area. But statistical significance wasn't accepted in general. In case of monochromatic lights, length of plant and leaf area is biggest in the Blue 450 mm and the length of root is highest in RED 650 mm. Except for this 3 measuring points (length of plant, the number of leaves and fresh weight), sun light and white was highest. Besides there are monochromatic light effect but various wavelength range in light sources are needed to crop growth. In terms of mixed light resources, except for sun light, It turned out the length of plant is highest in the highest red light rate red : blue (9 : 1), and Red : white (7 : 3) is highest in fresh weight and dry weight. The sun light is the highest one in the leaf area. The results from LED light effect in growth of chrysanthemum are obviously effect on growth and building up the shape. We need to choose suitable light sources in the monochromatic lights and mixed lights for growing high quality of chrysanthemum or Supplemental Lighting.

Leaf Shape Index, Growth, and Phytochemicals in Two Leaf Lettuce Cultivars Grown under Monochromatic Light-emitting Diodes (단색 발광다이오드에서 자란 축면상추 두 품종의 엽형, 생장 및 기능성 물질)

  • Son, Ki-Ho;Park, Jun-Hyung;Kim, Daeil;Oh, Myung-Min
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.664-672
    • /
    • 2012
  • As an artificial light source, light-emitting diode (LED) with a short wavelength range can be used in closed-type plant production systems. Among various wavelength ranges in visible light, individual light spectra induce distinguishing influences on plant growth and development. In this study, we determined the effects of monochromatic LEDs on leaf shape index, growth and the accumulation of phytochemicals in a red leaf lettuce (Lactuca sativa L. 'Sunmang') and a green leaf lettuce (Lactuca sativa L. 'Grand rapid TBR'). Lettuce seedlings grown under normal growing conditions ($20^{\circ}C$, fluorescent lamp + high pressure sodium lamp, $130{\pm}5{\mu}mmol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours photoperiod) for 18 days were transferred into incubators at $20^{\circ}C$ equipped with various monochromatic LEDs (blue LED, 456 nm; green LED, 518 nm; red LED, 654 nm; white LED, 456 nm + 558 nm) under the same light intensity and photoperiod ($130{\pm}7{\mu}mmol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours photoperiod). Leaf length, leaf width, leaf area, fresh and dry weights of shoots and roots, shoot/root ratio, SPAD value, total phenolic concentration, antioxidant capacity, and the expression of a key gene involved in the biosynthesis of phenolic compounds, phenylalanine ammonia-lyase (PAL), were measured at 9 and 23 days after transplanting. The leaf shape indexes of both lettuce cultivars subjected to blue or white LEDs were similar with those of control during whole growth stage. However, red and green LEDs induced significantly higher leaf shape index than the other treatments. The green LED had a negative impact on the lettuce growth. Most of growth characteristics such as fresh and dry weights of shoots and leaf area were the highest in both cultivars subjected to red LED treatment. In case of red leaf lettuce plants, shoot fresh weight under red LED was 3.8 times higher than that under green LED at 23 days after transplanting. In contrast, the accumulation of chlorophyll, phenolics including antioxidants in lettuce plants showed an opposite trend compared with growth. SPAD value, total phenolic concentration, and antioxidant capacity of lettuce grown under blue LED were significantly higher than those under other LED treatments. In addition, PAL gene was remarkably activated by blue LED at 9 days after transplanting. Thus, this study suggested that the light quality using LEDs is a crucial factor for morphology, growth, and phytochemicals of two lettuce cultivars.

비 Cd계 양자점 합성 및 LED 응용

  • Kim, Yeong-Guk
    • Ceramist
    • /
    • v.16 no.2
    • /
    • pp.42-49
    • /
    • 2013
  • 기존의 Cd계 양자점에 비해 독성 문제가 적은 비 Cd계 양자점은 합성 공정과 발광 특성 제어의 난이도로 인해 아직 Cd계 양자점에 비해 응용성이 떨어지는 상태이다. 또한 기존의 형광체와 같이 쓰이거나 이를 대체하기 위해서는 온도에 따른 발광안정성 확보가 필요하지만, 아직은 전이금속 도핑된 II-VI족 양자점을 제외하면 쉽지 않은 실정이다. 그러나 핵-껍질 구조 형성, 표면처리 등 많은 연구를 통해 Cd계 양자점과 거의 동등한 발광효율을 얻을 수 있게 되었으며, 발광의 색순도를 표시하는 발광선폭 역시 Cd계 양자점에 상당히 근접하였다. 특히 BLU 응용을 위해서는 좁은 발광선폭이 필수적이며 조명용 백색 LED 응용을 위해서도 색순도가 높으며 발광효율이 우수한 적색 형광입자의 필요성이 크다. 대표적인 비 Cd계 양자점인 InP의 경우 공유결합성이 커서 합성 과정에 어려움이 있으며, 표면 제어가 쉽지 않으나 부단한 연구개발을 통해 40~50 nm까지 발광선폭을 줄였으며, 발광효율도 거의 100%에 육박하는 값을 얻은 바 있다. 향후 좀더 많은 연구개발을 통해 발광 안정성이 우수하고 색순도가 높은 고특성 비 Cd계 양자점의 개발이 이루어 지면 조명용 LED나 디스플레이의 고성능화를 실현시키는 중요한 소재가 될 것으로 기대한다.

  • PDF

Luminescent Properties of strontium aluminate phosphor (Strontium aluminate 형광체의 발광특성연구)

  • 한상혁;김영진
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.185-185
    • /
    • 2003
  • 백색 LED를 실현하는 방법의 하나로 UV LED와 적, 녹, 청의 3색 형광체를 이용하는 방법이 주목받고 있다. 이것은 연색성과 색온도 제어 특성이 뛰어나다. 그러나 기존의 형광체는 단파장, 약 250nm 전후, 에서 여기되는 특성을 갖고 있기 때문에 near UV(nUV), 약 380-410nm, 의 LED에 응용하기에는 발광특성에 문제점을 갖고 있다. 본 연구에서는 nUV 여기가 가능한 strontium aluminate를 flux를 이용한 고상반응법으로 합성하고 발광 특성을 분석하였다. SrO와 A1$_2$ $O_3$의 조합비와 반응조건에 따라서 SrA1$_2$ $O_4$ 흑은 Sr$_4$Al$_{14}$ $O_{25}$ 가 합성되었고, 이들은 도핑과 함께 각각 약 520nm에서의 녹색발광과 약 480nm에서의 청녹색 발광 특성을 보이고 있었다. 도펀트로는 Eu, Dy, Ce, Pr 등이 단독 혹은 혼합되어 첨가되었고, 종류와 양에 따라서 발광 파장의 이동이 관찰 되었고, 강도도 이것에 크게 의존하고 있었다. 또한 발광강도는 여기 파장에도 의존하고 있었으며, 약 350-390nm의 nUV에서 가장 높은 발광강도가 관찰되었다.다.

  • PDF

Lifetime Estimation of High Power White LED for Lighting Use (고출력 조명용 White LED의 수명예측)

  • Lee, Myeong-Hoon;Shin, Seung-Jung;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1343-1348
    • /
    • 2008
  • LEDs which have many merits are widely used in the field of light devices, and have rapidly replaced old light devices such as incandescent or fluorescent lamps. Long life, on the order of 50,000 to 100,000 hours, is one of the key features of light emitting diodes(LEDs) that has attracted the lighting community to this technology. High Power white LEDs have yet to demonstrate this capability. This paper planed accelerated life test that has two factor(temperature, current) and two levels. Finally, using ALTA programs, we estimated the common shape parameter of Weibull distribution, life-stress relationship, B10 life and accelerating factors.

  • PDF

A Color Temperature and Illuminance Controllable LED Lighting System (색온도와 조도 제어가능한 LED 조명 시스템)

  • Kim, Hoon;Youm, Jea-Kyoung;Chung, Won-Sup;Kim, Hee-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.10-22
    • /
    • 2009
  • This paper presents an LED lighting system with an LED color control algorithm that can independently change its color temperature and illuminance. To show the validity of the proposed algorithm, it is proven that its solution always exists. The proposed algorithm was applied to the control of an LED module that is composed of red, green, blue, and white (RGBW) LEDs. Its color temperature variation ranged from 3,500~7,500[$^{\circ}K$], and its illuminance ranges from 500~1,500[lux]. Within these range, the color temperature and illuminance deviations are as low as $\pm0.8$[%] when the junction temperature of LEDs are maintained at 40[$^{\circ}C$]. In the range of 30~70[$^{\circ}C$], the measured illuminance and color temperature deviations are as low as 2.1[%] and 3.6[%], and the compensated ones are as low as 1[%] and 0.49[%], when the desired illuminance and color temperature are 1,000[lux] and 6,500[$^{\circ}K$], respectively.nyang.ac.kr).

The Size Effect and Its Optical Simulation of Y3Al5O12:Ce3+ Phosphors for White LED (백색 LED용 Y3Al5O12:Ce3+ 형광체 크기 효과 및 광 시뮬레이션)

  • Lee, Sung Hoon;Kang, Tae Wook;Kim, Jong Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.10-14
    • /
    • 2019
  • In this study, we synthesized two $Y_3Al_5O_{12}:Ce^{3+}$ phosphors ($7{\mu}m$-sized and $2{\mu}m$-sized YAG) with different sizes by controlling particles sizes of starting materials of the phosphors for white LED. In the smaller one ($2{\mu}m$-sized YAG), its photoluminescence intensity in the reflective mode was 63 % that of the bigger one ($7{\mu}m$-sized YAG); the quantum efficiencies were 93 % and 70 % for the smaller and the bigger ones. Two kinds of white LED packages with the same color coordinates were fabricated with a blue package (chip size $53{\times}30$) and two phosphors. The luminous flux of the white LED package with the smaller YAG phosphor was 92 % of that with the bigger one, indicating that the quantum efficiency of phosphor dispersed inside LED package was higher than that of the pure powder. It was consistently confirmed by the optical simulation (LightTools 6.3). It is notable according to the optical simulation that the white LED with the smaller phosphor showed 24 % higher luminous efficiency. If the smaller one had the same quantum efficiency as the bigger one (~93 %). Therefore, it can be suggested that the higher luminous efficiency of white LED can be possible by reducing the particle size of the phosphor along with maintaining its similar quantum efficiency.

Application of White Light Emitting Diodes to Produce Uniform Scions and Rootstocks for Grafted Fruit Vegetable Transplants (과채류 접목 시 균일한 접수와 대목 생산을 위한 백색 LED의 적용)

  • Hwang, Hyunseung;Chun, Changhoo
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.14-21
    • /
    • 2022
  • Uniform scions and rootstocks should be produced to ensure grafting success. Light quality is an important environmental factor that regulates seedling growth. The effects of warm- and cool-white light emitting diode (LED) ratios on seedling growth were investigated. Scions and rootstocks of cucumber, tomato, and watermelon were grown in a closed transplant production system using LED as the sole lighting source. The LED treatments were W1C0 (only warm-white), W1C1 (warm-white: cool-white = 1:1), W3C1 (warm-white: cool-white = 3:1), and W5C2 (warm-white: cool-white = 5:2). The seedlings grown in W1C1 had the shortest hypocotyls, and the seedlings grown in W1C0 had the longest hypocotyls among the three tested vegetables. The hypocotyls of watermelon scions, watermelon rootstocks, and tomato rootstocks were shortest in W1C1, followed by those in W3C1, W5C2, and W1C0, but there was no significant difference between W3C1 and W5C2, which remained the same as the ratio of cool-white LEDs increased. In addition, tomato scions had the first and second longest hypocotyls in W1C0 and W3C1, respectively, and the shortest hypocotyls in W5C2 and W1C1, along with W5C2 and W1C1, although the difference was not significant. The stem diameter was highest in W1C0 except for tomato seedlings and rootstocks of watermelon. The shoot fresh weight of scions and rootstocks of cucumber and watermelon and the root fresh weight of cucumber scions were lowest in W1C1. These results indicated that different ratios of LED lighting sources had a strong effect on the hypocotyl elongation of seedlings.