• Title/Summary/Keyword: 백색잡음가진

Search Result 22, Processing Time 0.019 seconds

Damage Detection of a Frame Structure Using Finite Element Model Updating (유한요소모델개선기법을 이용한 골조구조물의 손상탐지)

  • Yu, Eun-Jong;Kim, Seung-Nam;Lee, Hyun-Kook;Choi, Hang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.445-452
    • /
    • 2009
  • In this paper, damage detection procedure using the finite element model updating was formulated and applied to a small-scale frame structure. FE model updating is the analytical method which finds the mathematical model that generates the measured dynamic properties similarly, and can be effectively used for the damage detection and SHM. For model updating, several kinds of dynamic properties, such as the natural frequencies, mode shapes, and frequency response functions, can be used as the inputs. In this paper, two kinds of model updating procedures using the natrual frequency and the frequency response function, and the natrual frequency and the mode shapes, respectively, were applied to identify the location and the severity of damage of the test structure, which is a four-story two bay steel structure. Results from the damage detection showed that more accurate identification results was obtained when the natrual frequency and the frequency response function were used than when the natrual frequency and the mode shapes were used.

Hierarchical Image Encryption System Using Orthogonal Method (직교성을 이용한 계층적 영상 암호화)

  • Kim, Nam-Jin;Seo, Dong-Hoan;Lee, Sung-Geun;Shin, Chang-Mok;Cho, Kyu-Bo;Kim, Soo-Joong
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.231-239
    • /
    • 2006
  • In recent years, a hierarchical security architecture has been widely studied because it can efficiently protect information by allowing an authorized user access to the level of information. However, the conventional hierarchical decryption methods require several decryption keys for the high level information. In this paper, we propose a hierarchical image encryption using random phase masks and Walsh code having orthogonal characteristics. To decrypt the hierarchical level images by only one decryption key, we combine Walsh code into the hierarchical level system. For encryption process, we first perform a Fourier transform for the multiplication results of the original image and the random phase mask, and then expand the transformed pattern to be the same size and shape of Walsh code. The expanded pattern is finally encrypted by multiplying with the Walsh code image and the binary phase mask. We generate several encryption images as the same encryption process. The reconstruction image is detected on a CCD plane by a despread process and Fourier transform for the multiplication result of encryption image and hierarchical decryption keys which are generated by Walsh code and binary random phase image. Computer simulations demonstrate that the proposed technique can decrypt hierarchical information by using only one level decryption key image and it has a good robustness to the data loss such as random cropping.