• Title/Summary/Keyword: 백색광간섭계

Search Result 52, Processing Time 0.015 seconds

Development of Elimination Method of Measurement noise to Improve accuracy for White Light Interferometry (백색광 간섭계의 정밀도 향상을 위한 노이즈 제거 방법)

  • Ko, Kuk-Won;Cho, Soo-Yong;Kim, Min-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.519-522
    • /
    • 2008
  • As industry of a semiconductor and LCD industry have been rapidly growing, precision technologies of machining such as etching and 3D measurement are required. Stylus has been important measuring method in traditional manufacturing process. However, its disadvantages are low measuring speed and damage possibility at contacting point. To overcome mentioned disadvantage, non-contacting measurement method is needed such as PMP(Phase Measuring Profilometry), WSI(white scanning interferometer) and Confocal Profilometry. Among above 3 well-known methods, WSI started to be applied to FPD(flat panel display) manufacturing process. Even though it overcomes 21t ambiguity of PMP method and can measure objects which has specular surface, the measuring speed and vibration coming from manufacturing machine are one of main issue to apply full automatic total inspection. In this study, We develop high speed WSI system and algorithm to reduce unknown noise. The developing WSI and algorithm are implemented to measure 3D surface of wafer. Experimental results revealed that the proposed system and algorithm are able to measure 3D surface profile of wafer with a good precision and high speed.

Surface Topography Measurement and Analysis for Bullet and Casing Signature Identification (총기 인식을 위한 측정 시스템 구현 및 해석 알고리즘 개발)

  • Rhee, Hyug-Gyo;Lee, Yun-Woo;Vorburger Theodore Vincent;Reneger Tomas Brian
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2006
  • The Integrated Ballistics Identification Systems (IBIS) is widely used for bullet and casing signature identification. The IBIS obtains a pair of ballistic signatures from two bullets (or casings) using optical microscopy, and estimates a correlation score which can represent the degree of signature match. However, this method largely depends on lighting and surface conditions because optical image contrast is primarily a function of test surface's slope, shadowing, multiple reflections, optical properties, and illumination direction. Moreover, it can be affected with surface height variation. To overcome these problems and improve the identification system, we used well known surface topographic techniques, such as confocal microscopy and white-light scanning interferometry. The measuring instruments were calibrated by a NIST step height standard and verified by a NIST sinusoidal profile roughness standard and a commercial roughness standard. We also suggest a new analysis method for the ballistic identification. In this method, the maximum cross-correlation function CCFmax is used to quantify the degree of signature match. If the compared signatures were exactly the same, CCFmax would be $100\%$.