• Title/Summary/Keyword: 백분위수 붓스트랩 방법

Search Result 2, Processing Time 0.014 seconds

Robust confidence interval for random coefficient autoregressive model with bootstrap method (붓스트랩 방법을 적용한 확률계수 자기회귀 모형에 대한 로버스트 구간추정)

  • Jo, Na Rae;Lim, Do Sang;Lee, Sung Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.99-109
    • /
    • 2019
  • We compared the confidence intervals of estimators using various bootstrap methods for a Random Coefficient Autoregressive(RCA) model. We consider a Quasi score estimator and M-Quasi score estimator using Huber, Tukey, Andrew and Hempel functions as bounded functions, that do not have required assumption of distribution. A standard bootstrap method, percentile bootstrap method, studentized bootstrap method and hybrid bootstrap method were proposed for the estimations, respectively. In a simulation study, we compared the asymptotic confidence intervals of the Quasi score and M-Quasi score estimator with the bootstrap confidence intervals using the four bootstrap methods when the underlying distribution of the error term of the RCA model follows the normal distribution, the contaminated normal distribution and the double exponential distribution, respectively.

On Statistical Inference of Stratified Population Mean with Bootstrap (층화모집단 평균에 대한 붓스트랩 추론)

  • Heo, Tae-Young;Lee, Doo-Ri;Cho, Joong-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.405-414
    • /
    • 2012
  • In a stratified sample, the sampling frame is divided into non-overlapping groups or strata (e.g. geographical areas, age-groups, and genders). A sample is taken from each stratum, if this sample is a simple random sample it is referred to as stratified random sampling. In this paper, we study the bootstrap inference (including confidence interval) and test for a stratified population mean. We also introduce the bootstrap consistency based on limiting distribution related to the plug-in estimator of the population mean. We suggest three bootstrap confidence intervals such as standard bootstrap method, percentile bootstrap method and studentized bootstrap method. We also suggest a bootstrap test method computing the $ASL_{boot}$(Achieved Significance Level). The results of estimation are verified using simulation.