• Title/Summary/Keyword: 백금 나노촉매

Search Result 41, Processing Time 0.026 seconds

MeV 전자빔 조사를 통한 Pt/Graphene 복합 나노구조의 형성

  • Cha, Myeong-Jun;Song, U-Seok;Kim, Yu-Seok;Jeong, Dae-Seong;Kim, Seong-Hwan;Lee, Su-Il;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.570-570
    • /
    • 2012
  • 그래핀(graphene)은 육각형의 탄소원자 한층으로 이루어진 이차원 구조체로써 우수한 물리적, 전기적 특성으로 인해 다양한 분야에서 응요을 위한 연구가 활발히 진행되고 있다. 특히, 그래핀과 금속 나노입자의 복합구조는 수소 저장체, 가스센서, 연료전지, 화학 촉매등의 다양한 분야에서 응용이 가능하다. 현재까지 그래핀/금속나노입자 복합구조의 제작 방법에는 열증발(thermal evaporation), 전기도금법(electrodeposition), 표면 기능화(surface functionalization)를 이용한 방법이 보고되었다. 하지만 이러한 방법은 긴 공정시간이 요구되며, 나노입자의 크기 분포가 넓다는 단점을 지닌다. 본 연구에서는 화학기상증착법을 통해 합성된 그래핀이 전사된 SiO2 (300nm)/Si 기판에 염화기가 포함된 백금 화합물 분산용액을 스핀코팅(spin-coating)하고 MeV 전자빔을 조사하여 Pt/grapheme 복합구조를 형성하였다. 이 방법은 균일한 크기 분포의 나노입자의 형성이 가능하며, 간단하고, 대면적 공정이 가능하며, 다른 방법에 비해 그래핀의 결함형성이 적다는 장점을 지닌다. Pt/grapheme 의 기하학적 구조를 주사전자현미경(scanning electron microscopy)와 투과전자현미경(transimission)을 통해 분석하였고, Pt와 graphene의 일함수(workfunction)의 차이에 의해 야기되는 전하이동에 의한 도핑(doping)현상을 라만 분광기(Raman spectroscopy)와 X-선 광전자 분광기(X-ray photoelectron spectroscopy)를 통해 분석하였다.

  • PDF

Study on the Nanoscale Behavior of ALD Pt Nanoparticles at Elevated Temperature (ALD Pt 나노입자의 고온 거동에 대한 연구)

  • An, Jihwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.691-695
    • /
    • 2016
  • This paper covers the investigation of the microscale behavior of Pt nanostrucures fabricated by atomic layer deposition (ALD) at elevated temperature. Nanoparticles are fabricated at up to 70 ALD cycles, while congruent porous nanostructures are observed at > 90 ALD cycles. The areal density of the ALD Pt nanostructure on top of the SiO2 substrate was as high as 98% even after annealing at $450^{\circ}C$ for 1hr. The sheet resistance of the ALD Pt nanostructure dramatically increased when the areal density of the nanostructure decreased below 85 - 89% due to coarsening at elevated temperature.

Preparation of Pt/porous Gold Electrode for CO Oxidation (CO 가스 산화를 위한 백금/다공성 골드 전극의 개발)

  • Shin, So-Hyang;Kim, He-Ro;Oh, Cheon-Seok;Ko, Jae-Wook;Kim, Young-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.27-32
    • /
    • 2011
  • Management of gas safety is becoming important with increasing use of gas facilities. U-safety system is being promoted as part of national management of gas, and thus real-time and in-situ gas sensor should be developed. Detection method for When the gas sensor is installed in gas conduit, explosion may be likely, because hydrocarbon gases is usually used the difference of thermal resistance between reference and working electrode. Therefore, it is required to detect the hydrocarbons, such as $CH_4$ and CO, at room temperature via electrochemically catalytic reaction. In this study, Pt nanoparticle was doped on the porous gold powder by electrolytic plating method, and then it was used as catalytic electrode for CO oxidation. For Pt/PAu electrode, approximately 21% of CO conversion was obtained. It is noted that Pt/PAu electrode could be used to react the oxidation of hydrocarbon gases at room temperature via applying of external voltage.

다공성 나노 Pd 박막의 수소 검출 특성

  • No, Hui-Jun;Park, Jin-Seong;Kim, Hyeon-Jong;Kim, An-Na;Han, Min-A;Lee, Ho-Nyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.84.1-84.1
    • /
    • 2018
  • 현재 사용되고 있는 화석 연료는 고갈되고 있으며 지구온난화와 같은 환경오염을 일으키는 주원인으로 이를 대체하는 에너지원으로서 수소가 주목받고 있다. 그러나 수소는 상온 및 대기압에서 4 %의 낮은 LEL (lower explosive limit)을 가지므로 높은 인화성과 폭발성을 가진다. 또한 무색, 무취한 성질을 가지고 있어 사람에 의해 검출되지 않는다. 그러므로 상온에서의 수소 농도를 정량화하고 검출하기 위한 방법이 필요하다. 수소를 검출하기 위한 수소센서에는 저항, 촉매, 광학, 일함수 등을 이용한 센서들이 있으며 그 중 저항을 이용한 귀금속 기반 수소센서가 널리 알려져 있다. 팔라듐(Pd), 백금 (Pt)와 같은 귀금속 기반 수소센서는 높은 수소 용해도 및 확산으로 인해 수소에 우수한 선택성을 가진다. 특히 Pd는 흡착에 대한 친화성이 매우 우수하다. 팔라듐에 수소가 노출되면, 수소가 Pd 격자로 확산되어 Pd-hydride를 형성시켜 부피가 팽창되고 저항이 변한다. 이러한 특성을 바탕으로 팔라듐의 저항 변화를 기반으로 한 수소센서의 개발이 진행되고 있다. 본 연구에서는 물리기상증착 (PVD)을 이용하여 다양한 다공성 나노 Pd 박막을 가지는 수소센서를 제작하였으며, 수소 농도에 따른 실온에서의 수소 검출 특성을 관찰하였다. 제작된 다공성 나노 Pd 박막의 특성은 SEM, TEM 및 XRD를 통하여 확인하였다. 다공성 나노 Pd 박막이 수소에 노출 되었을 때 전자 산란 및 접촉 면적의 증가에 따른 저항의 변화를 확인하였다.

  • PDF

Mechanical Property of Nafion Membrane Incorporated with Pd Nanocatalyst and the Performance of PEMFC (Pd 나노 촉매가 도입된 나피온 막의 기계적 강도 및 고분자 전해질막 연료전지 (PEMFC) 성능)

  • LEE, WOOKUM;LEE, HONGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.270-275
    • /
    • 2016
  • A simple solid state incorporation method was employed in order to incorporate Pd nanocatalyst into a Nafion film for polymer electrolyte membrane fuel cell (PEMFC) via the reduction of palladium (II) bis (acetylacetonate), $Pd(acac)_2$. It was sublimed, penetrated into Nafion film and then reduced to Pd nanoparticles simultaneously in a glass reactor of N2 atmosphere at $180^{\circ}C$ for 1, 3 and 5 min. This reaction was took place without any reducing agent and any solvent. The morphology of the Pd nanoparticles was observed by transmission electron microscopy (TEM), and Pd distribution was analyzed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). And 23% modification of tensile strength of Pd/Nafion composite film was measured by universal testing machine and I-V curve was estimated by using a unit cell with $5{\times}5cm^2$ active area.

Ethanol Electro-Oxidation and Stability of Pt Supported on Sb-Doped Tin Oxide (안티몬 도핑된 주석 산화물에 담지된 백금 촉매의 에탄올 산화 반응 및 안정성 연구)

  • Lee, Kug-Seung;Park, Hee-Young;Jeon, Tae-Yeol;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • Electrocatalytic activities and stabilities of Pt supported on Sb-doped $SnO_2$ (ATO) were examined for ethanol oxidation reactions. Pt colloidal particles were deposited on ATO nanoparticles (Pt/ATO) and the prepared electrocatalysts were characterized by X-ray diffraction, transmission electron microscopy (TEM), and cyclic voltammetry. Electrochemical activity of the Pt/ATO for ethanol electro-oxidation was compared to those of Pt supported on carbon (Pt/C) and commercial PtRu/C. The activitiy of the Pt/ATO was much higher than those of the Pt/C and commercial PtRu/C. The Pt/ATO exhibited much higher electrochemical stabilities than the Pt/C in 0.5M ${H_2}{SO_4}$ and in 0.5M ${H_2}{SO_4}$/1M ${C_2}{H_5}OH$. According to TEM, the growth rate of Pt particles was lower in the Pt/ATO than it was in the Pt/C. The ATO nanoparticle appears to be a promising support material that promotes electrochemical reactions and stabilizes catalyst particles in direct ethanol fuel cell.

Enhancement of oxygen evolution reaction of NiCo LDH nanocrystals using Mo doping (Mo 도핑을 이용한 NiCo LDH 나노결정의 산소발생반응 향상)

  • Kyoungwon Cho;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.92-97
    • /
    • 2024
  • To improve the efficiency of water splitting systems for hydrogen production, the high overvoltages of electrochemical reactions caused by catalysts in the oxygen evolution reaction (OER, Oxygen Evolution Reaction) must be reduced. Among them, LDH (Layered Double Hydroxide) compounds containing transition metal such as Ni, are attracting attention as catalyst materials that can replace precious metals such as platinum that are currently used. In this study, nickel foam, an inexpensive metallic porous material, was used as a support, and NiCo LDH (Layered Double Hydroxide) nanocrystals were synthesized through a hydrothermal synthesis process. In addition, changes in the shape, crystal structure, and water decomposition characteristics of the Mo-doped NiCo LDH nanocrystal samples synthesized by doping Mo to improve OER properties were observed.

An Oxyfluorination Effect of Carbon Nanotubes Supports on Electrochemical Behaviors of Platinum Nanoparticle Electrodes (백금 나노입자전극의 전기화학적 거동에 대한 카본나노튜브 지지체의 산소-불소 처리효과)

  • Kim, Seok;Lee, Jae-Rock;Park, Soo-Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.118-123
    • /
    • 2008
  • In the present study, the effect of oxyfluorination treatment on multi-walled nanotubes (MWNTs) supports was investigated by analyzing surface functional groups. The surface characteristics were determined by Fourier transformed-infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). After the deposition of platinum nanoparticles on the above treated carbon supports, a crystalline size and a loading level had been investigated. Electrochemical properties of the treated MWNTs-supported Pt (Pt/MWNTs) catalysts were analyzed by current-voltage curve measurements. From the results of surface analysis, an oxygen and fluorine-containing functional group had been introduced to the surface of carbon supports. The oxygen and fluorine contents were the highest value at the treatment of 100 temperature. The Pt/100-MWNTs showed the smallest particle crystalline size of 3.5 nm and the highest loading level of 9.4% at the treatment of 100 temperature. However, the sample treated at the higher temperature showed the larger crystalline size and the lower loading level. This indicated that the crystalline size and the loading level could be controlled by changing the temperature of oxyfluorination treatment. Accordingly, an electrochemical activity was enhanced by increasing the temperature of treatment upto 100, and then decreased in the case of 200 and 300. The highest specific current density of 120 mA/mg had been obtained in the case of Pt/100-MWNTs.

Effect of Chemical Treatment on Performance Behaviors of PtRu/GNFs Catalysts for DMFCs (직접 메탄올 연료전지용 PtRu/GNF 성능에 대한 화학적 처리의 영향)

  • Park, Soo-Jin;Park, Jeong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.369-372
    • /
    • 2009
  • In the present study, the effect of chemical treatment on graphite nanofibers (GNFs) supports with various concentrated nitric acids was investigated for methanol oxidation. To optimize the electrocatalytic activity, PtRu catalysts were deposited on GNF supports by impregnation method. The surface and structural properties of the GNF supports were characterized by X-ray photoelectron spectroscopy (XPS), element analyzer (EA), and X-ray diffraction (XRD). The morphology of the catalysts was observed by means of transmission electron microscopy (TEM). The electrocatalytic activity of PtRu/GNF catalysts was investigated by cyclic voltammetry measurement. As a result, the oxygen functional groups were introduced on the GNF supports and were gradually increased with increasing of concentrated nitric acid, causing the smaller particle size and higher loading level. And the electrocatalytic activity of the catalysts for methanol oxidation was gradually improved. Consequently, it was found that chemical treatments could influence on surface properties of the carbon supports, resulting in enhancing the electrocatalytic activity of the catalysts for DMFCs.

  • PDF

Methanol Electro-Oxidation Properties of Pt Electro-Catalysts Embedded by Porous Carbon Nanofiber Supports (다공성 탄소나노섬유 지지체에 담지된 백금촉매의 메탄올 산화 특성 연구)

  • Sin, Dong-Yo;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.113-118
    • /
    • 2015
  • To improve the methanol electro-oxidation in direct methanol fuel cells(DMFCs), Pt electrocatalysts embedded on porous carbon nanofibers(CNFs) were synthesized by electrospinning followed by a reduction method. To fabricate the porous CNFs, we prepared three types of porous CNFs using three different amount of a styrene-co-acrylonitrile(SAN) polymer: 0.2 wt%, 0.5 wt%, and 1 wt%, respectively. A SAN polymer, which provides vacant spaces in porous CNFs, was decomposed and burn out during the carbonization. The structure and morphology of the samples were examined using field emission scanning electron microscopy and transmission electron microscopy and their surface area were measured using the Brunauer-Emmett-Teller(BET). The crystallinities and chemical compositions of the samples were examined using X-ray diffraction and X-ray photoelectron spectroscopy. The electrochemical properties on the methanol electro-oxidation were characterized using cyclic voltammetry and chronoamperometry. Pt electrocatalysts embedded on porous CNFs containing 0.5 wt% SAN polymer exhibited the improved methanol oxidation and electrocatalytic stability compared to Pt/conventional CNFs and commercial Pt/C(40 wt% Pt on Vulcan carbon, E-TEK).