• Title/Summary/Keyword: 백금/티타니아

Search Result 3, Processing Time 0.016 seconds

Dispersion and Stability of Platinum Catalysts Supported on Titania-, Vanadia-, Zirconia- and Ceria-Incorporated Silicas (티타니아, 바나디아, 지르코니아, 세리아를 고정한 실리카에 담지된 백금 촉매의 분산성과 안정성)

  • Kim, Mi-Young;Seo, Gon;Park, Jung-Hyun;Shin, Chae-Ho;Kim, Eun-Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Platinum catalysts were prepared by impregnating platinum precursor on titania-, vanadia-, zirconia- and ceria-incorporated silicas followed by hydrogen peroxide treatment. The effects of the oxide incorporation and the hydrogen peroxide treatment in the preparation of the platinum catalysts on their platinum dispersion and catalytic activity in carbon monoxide oxidation were investigated. XRD, TEM, EXAFS, XPS and carbon monoxide chemisorption studies confirmed the high dispersion of platinum even on silica by the oxide incorporation and hydrogen peroxide treatment. However, the type of oxides incorporated on silica caused considerable variances in the adsorption and the catalytic activity in the oxidation of carbon monoxide on them. The incorporation of titania, zirconia and ceria on silica and further hydrogen peroxide treatment enhanced the platinum dispersion, resulting in the improved catalytic activities. Among the catalysts supported on the oxide-incorporated silicas, the platinum catalyst supported on zirconia-incorporated silica exhibited the highest activity because of the highest platinum dispersion due to the formation of Pt-O-Zr bonds.

Production Conditions of the Photo-catalyst for Removing Indoor Pollutants (실내오염물질 제거용 광촉매의 제조조건에 따른 반응활성 연구)

  • Nam, Ki Bok;Park, In Chul;Hong, Sung Chang
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • This study was performed to study the photocatalyst for controlling the pollutant such as CO, C2H5OH and H2S by the UV light. This was shown in a catalyst having the same volume and the same surface area, that the structure in which the UV light to reach the interior structure exhibits more excellent activity. However, the activity of this activity of this photocatalyst removal of CO was very low. This problem can be solved by performing a reduction process by the addition of the precious metal series of Pt. Particularly, the amount of chemical species Pt0 incerased in the surface of Pt/TiO2 photocatalyst through the reduction process, which make the reaction activity of photocatalyst excellent to the removal of the CO.

A Study on the Characteristics of CO Oxidation by NO Poisoning in Pt/TiO2 Catalyst (Pt/TiO2 촉매에서의 NO 피독에 의한 CO 산화반응특성 연구)

  • Kim, Min Su;Kim, Se Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • This study was conducted to investigate the characteristics of CO oxidation by NO poisoning in Pt/TiO2 catalyst prepared by wet impregnation method and calcined at 400 ℃. In order to confirm the NO poisoning effect of the Pt/TiO2 catalyst, the change of reaction activity was observed when NO was injected during the CO+O2 reaction where it was ascertained that the CO conversion rate rapidly decreased below 200 ℃. Also, CO conversion was not observed below 125 ℃. Recovery of initial CO conversion was not verified even if NO injection was blocked at 125 ℃. Accordingly, various analyses were performed according to NO injection. First, as a result of the TPD analysis, it was confirmed that NO pre-adsorption in catalyst inhibited CO adsorption and conversion desorption from adsorbed CO to CO2. When NO was pre-adsorbed, it was confirmed through H2-TPR analysis that the oxygen mobility of the catalyst was reduced. In addition, it was validated through FT-IR analysis that the redox cycle (Pt2+→Pt0→Pt2+) of the catalyst was inhibited. Therefore, the presence of NO in the Pt/TiO2 catalyst was considered to be a poisoning factor in the CO oxidation reaction, and it was determined that the oxygen mobility of the catalyst is required to prevent NO poisoning.