• Title/Summary/Keyword: 배터리 컨버터

Search Result 329, Processing Time 0.026 seconds

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

Design and Implementation of a Control System for the Phase Shift Full-bridge Converter of the On-board Charger for Electric Vehicles (전기자동차 탑재형 배터리 완속 충전기의 위상천이 풀-브릿지 컨버터 제어시스템 설계 및 구현)

  • Lee, Jun Hyok;Jung, Kwang-Soon;Kim, Ho Kyung;Hong, Sung-Soo;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1860-1867
    • /
    • 2016
  • In this paper, first, a linearized modeling of a phase shift full-bridge converter used in chargers of electric vehicles is derived by using state-space approach and transfer functions from the duty ratio to output voltage and the inductor current are also verified. second, control systems for the output voltage and the inductor current are designed using the root locus technique. It is illustrated by experimental results that the control performance on the output variables is satisfied with the designed digital control system based on a automobile qualified 32-bit microcontroller.

Study of High Efficiency LLC Resonant Converter for a Battery Charger of Emergency Electric Power Generator Control System (비상용 발전기 제어시스템의 배터리 충전기를 위한 고효율 LLC 공진형 컨버터의 연구)

  • Lee, Joonmin;Park, Min-Gi;Lee, Young Keun;La, Jae-Du
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.93-100
    • /
    • 2013
  • Generally, the conventional battery charging system using an analog method has the large, heavy hardware and low efficiency. Also, it has the disadvantage that it is necessary to replace the control circuit on the basis of the characteristic curve of the specific battery cell. The proposed programmable digital LLC resonant charging system use high efficiency control system(CC-CV), and has characteristic a small hardware and advantage that a digital programming of the voltage, current, and battery capacity characteristics can be flexible. The system proposed the use of Half-bridge LLC resonant converter is possible to improve efficiency and reduce switching losses by using ZVS topology. Further, a constant voltage - constant current(CC-CV) control algorithm apply to the charger which using a buck converter. The performance of the proposed system is demonstrated through experiments.

Design and Test of ESS DC-DC Converter using Zinc-Bromine Redox Flow Battery for Stand-alone Microgrid (Zinc-Bromine 레독스 플로우 배터리를 이용한 독립형 마이크로그리드 ESS DC-DC 컨버터 설계 및 실증)

  • Choe, Jung-Muk;Ra, Sun-Gil;Han, Dong-Hwa;Lee, Yong-Jin;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.106-115
    • /
    • 2014
  • This paper proposes ESS DC-DC Converter using Redox Flow Battery (RFB) for stand-alone microgrid. Price, safety, expandability and dynamics are crucial in ESS. Reports show that Zinc-bromine (ZnBr) RFB is the best choice in ESS. Simple electrical ZnBr RFB model is obtained from charging test. DC-DC converter Inductor current-DClink Voltage model is proposed for the DC microgrid. For the controller design in z-domain, the K-factor method is by considering nature of the digital controller. The control performance has been verified with simulation and hardware experiments. Lastly 10kW DC microgrid using RFB test result is shown.

Development of PV Module Integrated Type Low Voltage Battery Charger using Cascaded Buck-Boost Converter (Cascaded Buck-Boost 컨버터를 이용한 태양광 모듈 집적형 저전압 배터리 충전 장치 개발)

  • Kim, Dong-Hee;Lee, Hee-Seo;Lee, Young-Dal;Lee, Eun-Ju;Lee, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.471-477
    • /
    • 2012
  • In this paper, in order to use module integrated converter using cascaded buck-boost converter for a low battery charger in stand-alone system, a charging algorithm which considers photovoltaic and battery status and PWM controllers which are changed according to charging modes are proposed. The proposed algorithm consists of constant current mode, constant voltage mode and maximum power point tracking mode which enables the battery to charge with maximum power rate. This paper also presents design of cascaded buck-boost converter that is the photovoltaic charger system. A 150W prototype system is built according to verify proposed the charger system and the algorithm.

8kW LLC Isolated Converter Design for ESS Battery Charge/Discharge System (ESS 배터리 충방전 시스템을 위한 8kW급 LLC 절연형 컨버터 설계)

  • Kim, Jinwoo;Baek, Seunghoon;Cho, Younghoon;Koo, Tae-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.161-167
    • /
    • 2018
  • In battery-operated systems, an isolated converter is used to interface the utility grid with the system to increase stability when charging and discharging batteries. Systems such as vehicle-to-grids (V2Gs), on-board chargers, and energy storage systems (ESSs) have recently become popular, and the roles of isolated converters have become important considerations in fabricating such devices. A fixed-frequency LLC converter, which is a type of isolated converter, presents the advantages of high efficiency and high power density by performing zero-voltage switching (ZVS) over wide frequency ranges. However, the magnetizing inductance of the LLC converter should be designed to enable ZVS in all switching devices. Therefore, in this study, the operating characteristics of the LLC circuit are analyzed, and an optimal design method for ZVS operation is established. Moreover, an 8 kW LLC high-efficiency and high-power-density resonant converter is designed and tested for ESS application. The LLC converter achieves 98% efficiency at rated power.

Maximum Output Power Control for Stand-Alone Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 독립형 풍력발전시스템의 최대출력제어)

  • 김형균;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, a maximum output power control of stand-alone cage-type induction generator systems for wind power generation is proposed. The induction generator is operated in a vector-controlled mode, which is excited with d-axis current and of which torque is controlled with q-axis current. The generator speed is controlled by this torque, along which speed the generator produces the maximum output power. The generated power charges the battery bank for energy storage through an ac/dc PWM converter. The proposed scheme has been verified for the wind turbine simulator system which consists of M-G set.

Design of UPS system using SMB Flywheel Energy Storage System (초전도 플라이휠 에너지 저장시스템을 이용한 UPS 설계)

  • 정환명;최재호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.610-619
    • /
    • 2000
  • This paper presents an off-line UPS using the high temperature superconductive magnetic bearing. FES(Flywheel Energy Storage) system has good advantages in compare with lead acid battery. So, high efficiency FES using high temperature SMB(superconductive magnetic bearing) was composed in this paper. The outer rotor type of PMSM(Permanent Magnet Synchronous Motor) as motor/generator was used for the experiment, and square wave current and sinusoidal wave control methods was compared for high efficiency operation of motor/generator. The circuit for in phase sinusoidal wave current control with EMF in the full speed range was designed and the proposed flywheel energy storage system was applied in single phase off-line UPS system. As the stable operation characteristics of prototype system was confirmed, the its excellence as energy storage device in Off-line UPS was proved.

  • PDF

A High Efficiency LLC Resonant Converter with Wide Operation Range using Adaptive Turn Ratio Transformer for a Li-ion Battery (변압기의 가변 턴비 기법을 통해 넓은 전압범위를 만족하는 리튬이온 배터리용 고효율 LLC 공진형 컨버터)

  • Han, Hyeong-Gu;Choi, Yeong-Jun;Kim, Rae-Young;Kim, Juyong;Cho, Jintae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.305-311
    • /
    • 2017
  • In this paper, the LLC resonant converter battery charger, using adaptive turn ratio scheme, is proposed to achieve high efficiency and wide range output voltage. The LLC converter high frequency transformer has an adaptively changed turn ratio by the auxiliary control circuitry. As a result, the optimal converter design with a large magnetizing inductance is easily achieved to minimize the conduction and the turn-off losses while providing widely regulated voltage gain capability to properly charge the Li-ion battery. The proposed converter operational principle and the optimal design considerations are illustrated in detail. Finally, several simulation results verify the proposed LLC resonant converter's effectiveness.

Design of a 2kW Bidirectional Synchronous DC-DC Converter for Battery Energy Storage System (배터리 에너지 저장장치용 고효율 2kW급 양방향 DC-DC 컨버터 설계)

  • Lee, Taeyeong;Cho, Byung-Geuk;Cho, Younghoon;Hong, Chanook;Lee, Han-Sol;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.312-323
    • /
    • 2017
  • This paper introduces the bidirectional dc-dc converter design case study, which employs silicon-carbide (SiC) MOSFETs for battery energy storage system (BESS). This converter topology is selected as bidirectional synchronous buck converter, which is composed of a half bridge converter, an inductor, and a capacitor, where the converter has less conduction loss than that of a unidirectional buck and boost converter, and to improve the converter efficiency, both the power stage design and power conversion architecture are described in detail. The conduction and switching losses are compared among three different SiC devices in this paper. In addition, the thermal analysis using Maxwell software of each switching device supports the loss analyses, in which both the 2 kW prototype analyses and experimental results show very good agreement.