• Title/Summary/Keyword: 배터리팩

Search Result 126, Processing Time 0.018 seconds

Model-based Analysis of Cell-to-Cell Imbalance Characteristic Parameters in the Battery Pack for Fault Diagnosis and Over-discharge Prognosis (배터리 팩 내부 과방전 사전 진단을 위한 모델기반 셀 간 불균형 특성 파라미터 분석 연구)

  • Park, Jinhyeong;Kim, Jaewon;Lee, Miyoung;Kim, Byoung-Choul;Jung, Sung-Chul;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.381-389
    • /
    • 2021
  • Most diagnosis approaches rely on historical failure data that might not be feasible in real operating conditions because the battery voltage and internal parameters are nonlinear according to various operating conditions, such as cell-to-cell configuration and initial condition. To overcome this issue, the estimator and the predictor require integrated approaches that consider comprehensive data, with the degradation process and measured data taken into account. In this paper, vector autoregressive models (VAR) with various parameters that affect overdischarge to the cell in the battery pack were constructed, and the cell-to-cell parameters were identified using an adaptive model to analyze the influence of failure prognosis. The theoretical analysis is validated using experimental results in terms of the feasibility and advantages of fault prognosis.

Development of a battery management system(BMS) simulator for electric vehicle(EV) cars (EV용 배터리 관리시스템(BMS) 시뮬레이터 개발)

  • Park, Chan-Hee;Kim, Sang-Jung;Hwang, Ho-Suk;Lee, Hee-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2484-2490
    • /
    • 2012
  • This study reports on the development and performance verification of cell simulation boards of simulator and the embedded program for board control of the battery management system (BMS) of electric vehicle (EV) cars, which manages the next-generation automotive lithium-ion battery pack. Here, we have improved the speed of the simulator by using operational (OP) amplifier and transistors that were connected in series. In addition, using a digital analog converter (DAC) in each channel, we have improved the performance by channel-to-channel isolation (isolation) as compared to the traditional methods. Furthermore, by constructing a current-limiting protection circuit, one can be protected from disturbance and, by utilizing a precision shunt resistor for the current sensor, we have increased the precision of the current control. In order to verify the performance of the developed simulator, we have performed the experiment 10 times, with values ranging from 0.5 V to 5 V, and a voltage drop step of 0.5 V. Significance analysis of experimental data, and repeatability tests were performed, showing an average standard deviation of 0.001~0.004 V, indicating high repeatability and high statistical significance of the current method and system.

Development of Antibacterial Hood and Filter for Medical Powered Air Purifying Respirators (PAPR) (의료용 전동공기청정호흡기(PAPR)용 항균성 후드 및 필터 개발)

  • Eunjoo Koh;Nahyun Cho;Yong Taek Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.398-408
    • /
    • 2023
  • This work developed a hood and filter for antibacterial protective clothing for medical powered air purifying respirators (PAPR) that can be used in medical settings and quarantine against infectious diseases such as Zika virus, Middle East respiratory syndrome (MERS), and coronavirus disease-19 (COVID-19). The hood material of the protective clothing was made of polypropylene spunlace nonwoven fabric (SFS) was used for withstand wind pressure and external physcial pressure. Forthermore, in order to reduce the user's risk of infection, phytoncide-based materials were used on the outer-surface of the hood to achieve a 99.9% antibacterial effect, and the inner-surface were treated with hydro-philic materials to improve absorbency by 25%. In addition to evaluating the artificial blood penetration resistance, dry mi-croorganism penetration resistance, wet bacteria penetration resistance, and bacteriophage penetration resistance required for medical protective clothing hoods, it received a passing evaluation of levels 2-6. Meanwhile, as a result of evaluating the performance of the antibacterial treated spunlace high efficiency particulate air (HEPA) filter, excellent antibacterial properties, dust removal rate, and differential pressure effect were confirmed. All performance evaluations were conducted by an accredited certification body in accordance with the medical PAPR certification standards.

SOH Estimation and Feature Extraction using Principal Component Analysis based on Health Indicator for High Energy Battery Pack (건전성 지표 기반 주성분분석(PCA)을 적용한 고용량 배터리 팩의 열화 인자 추출 방법 및 SOH 진단 기법 연구)

  • Lee, Pyeong-Yeon;Kwon, Sanguk;Kang, Deokhun;Han, Seungyun;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.376-384
    • /
    • 2020
  • An energy storage system is composed of lithium-ion batteries in modern applications. Batteries are regarded as storage devices for renewable and residual energy. The failure of batteries can cause the performance reduction and explosion of battery systems. High maintenance cost is essential when dealing with the problem of battery safety. Therefore an accurate health diagnosis is required to ensure the high reliability of battery systems. A battery pack is a combination of single cells in series and parallel connections. A battery pack has to consider various factors to assess battery health. Battery health involves conventional factors and additional factors, such as cell-to-cell imbalance. For large applications, state-of-health (SOH) can be inaccurate because of the lack of factors that indicate the state of the battery pack. In this study, six characterization factors are proposed for improving the SOH estimation of battery packs. The six proposed characterization factors can be regarded as health indicators (HIs). The six HIs are applied to the principal component analysis (PCA) algorithm. To reflect information regarding capacity, voltage, and temperature, the PCA algorithm extracts new degradation factors by using the six HIs. The new degradation factors are applied to a multiple regression model. Results show the advancement and improvement of SOH estimation.

Development of a Series Hybrid Propulsion System for Bimodal Tram (바이모달 트램용 직렬형 하이브리드 추진시스템 개발)

  • Bae, Chang-Han;Lee, Kang-Won;Mok, Jai-Kyun;You, Doo-Young;Bae, Jong-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.494-502
    • /
    • 2011
  • Bimodal tram is designed to run on a dedicated path in automatic mode using a magnetic track system in order to realize a combination of the accessibility of a bus and the constant regularity of a railroad. This paper presents design and test results of the series hybrid propulsion system of the bimodal tram on both test track and public road, which uses CNG (Compressed Natural Gas) engine and Lithium polymer battery pack. This paper describes the real-time data measuring equipment for the series hybrid propulsion system of the bimodal tram. Using this measurement equipment, the performance of the prototype vehicle's driving on test track and public road was verified and the fuel consumption and the efficiency of CNG engine have been investigated.

A Portable Impedance Spectroscopy Instrument for the Measurement of the Impedance Spectrum of High Voltage Battery Pack (고압 배터리 팩의 임피던스 스펙트럼 측정용 휴대용 임피던스 분광기)

  • Rahim, Gul;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • The battery's State of Health (SOH) is a critical parameter in the process of battery use, as it represents the Remaining Useful Life (RUL) of the battery. Electrochemical Impedance Spectroscopy (EIS) is a widely used technique in observing the state of the battery. The measured impedance at certain frequencies can be used to evaluate the state of the battery, as it is intimately tied to the underlying chemical reactions. In this work, a low-cost portable EIS instrument is developed on the basis of the ARM Cortex-M4 Microcontroller Unit (MCU) for measuring the impedance spectrum of Li-ion battery packs. The MCU uses a built-in DAC module to generate the sinusoidal sweep perturbation signal. Moreover, it performs the dual-channel acquisition of voltage and current signals, calculates impedance using a Digital Lock-in Amplifier (DLA), and transmits the result to a PC. By using LabVIEW, an interface was developed with the real-time display of the EIS information. The developed instrument was suitable for measuring the impedance spectrum of the battery pack up to 1000 V. The measurement frequency range of the instrument was from 1 hz to 1 Khz. Then, to prove the performance of the developed system, the impedance of a Samsung SM3 battery pack and a Bexel pouch module were measured and compared with those obtained by the commercial instrument.