• Title/Summary/Keyword: 배터리전압

Search Result 495, Processing Time 0.021 seconds

Electrochemical Characteristics of Ultra Battery Anode Material using the Nano Pb/AC for ISG (나노 납/활성탄을 사용한 ISG용 울트라 전지 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.593-599
    • /
    • 2017
  • In order to enhance ultra battery performances, the electrochemical characteristics of nano Pb/AC anode composite was investigated. Through nano Pb adsorption onto activated carbon, nano Pb/AC was synthesized and it was washed under vacuum process. The prepared anode materials was analysed by SEM, BET and EDS. The specific surface area and average pore size of nano Pb/AC composite were $1740m^2/g$ and 1.95 nm, respectively. The negative electrode of ultra battery was prepared by nano Pb/AC dip coating on lead plate. The electrochemical performances of ultra battery were studied using $PbO_2$ (the positive electrode) and prepared nano Pb/AC composite (the negative electrode) pair. Also the electrochemical behaviors of ultra battery were investigated by charge/discharge, cyclic voltammetry, impedance and rate capability tests in 5 M $H_2SO_4$ electrolyte. The initial capacity and cycling performance of the present nano Pb/AC ultra battery were improved with respect to the lead battery and the AC-coated lead battery. These experimental results indicate that the proper addition of nano Pb/AC into the negative electrode can improve the discharge capacity and the long term cycle stability and remarkably suppress the hydrogen evolution reaction on the negative electrode.

Research on High-Efficiency Power Conversion Structure for Railroad Auxiliary Power Supply(APS) System (철도차량 보조전원장치의 효율향상을 위한 새로운 전력변환회로 구조 연구)

  • Cho, In-Ho;Jung, Shin-Myung;Lee, Byoung-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.297-303
    • /
    • 2016
  • This paper introduces auxiliary power supply systems (APS) for railroad applications and proposes a new power conversion structure for highly-efficient and lightweight APS systems. The proposed structure focuses on an improvement of the power density in APS. It eliminates unnecessary power conversion stages in the conventional APS structure by modulating the dc/dc converter circuit and the structure of the system. The dc/dc converter circuit used in the proposed structure is based on a multi-level half-bridge converter, a widely used topology in railroad APS applications; a flying capacitor is newly added to the conventional circuit. The added capacitor is used not only to enhance the soft switching condition of the switches, but also so that the new pantograph will have a side voltage source of a battery charger in the APS structure. Since the battery charger uses the pantograph side voltage source in the proposed structure, rather than using the output of the main dc/dc converter in the conventional structure, the size and efficiency of the main dc/dc converter are reduced and increased, respectively. To verify the effectiveness of the proposed structure, simulation results will be presented with metropolitan transit APS specifications.

Triboelectric Nanogenerator Utilizing Metal-to-Metal Surface Contact (금속-금속 표면 접촉을 활용한 정전 소자)

  • Chung, Jihoon;Heo, Deokjae;Lee, Sangmin
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.301-306
    • /
    • 2019
  • Triboelectric nanogenerator (TENG) is one of the energy harvesting methods in spotlight that can convert mechanical energy into electricity. As TENGs produce high electrical output, previous studies have shown TENGs that can power small electronics independently. However, recent studies have reported limitations of TENG due to air breakdown and field emission. In this study, we developed a triboelectric nanogenerator that utilizes the metal-to-metal surface contact to induce ion-enhanced field emission and electron avalanche for electrons to flow directly between two electrodes. The average peak open-circuit voltage of this TENG was measured as 340 V, and average peak closed-circuit current was measured as 10 mA. The electrical output of this TENG has shown different value depending on the surface charge of surface charge generation layer. The TENG developed in this study have produced RMS power of 0.9 mW, which is 2.4 times higher compared to conventional TENGs. The TENG developed in this study can be utilized in charging batteries and capacitors to power portable electronics and sensors independently.

Design of a Readout Circuit of Pulse Rate and Pulse Waveform for a U-Health System Using a Dual-Mode ADC (이중 모드 ADC를 이용한 U-Health 시스템용 맥박수와 맥박파형 검출 회로 설계)

  • Shin, Young-San;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.68-73
    • /
    • 2013
  • In this paper, we proposed a readout circuit of pulse waveform and rate for a U-health system to monitor health condition. For long-time operation without replacing or charging a battery, either pulse waveform or pulse rate is selected as the output data of the proposed readout circuit according to health condition of a user. The proposed readout circuit consists of a simple digital logic discriminator and a dual-mode ADC which operates in the ADC mode or in the count mode. Firstly, the readout circuit counts pulse rate for 4 seconds in the count mode using the dual-mode ADC. Health condition is examined after the counted pulse rate is accumulated for 1 minute in the discriminator. If the pulse rate is out of the preset normal range, the dual-mode ADC operates in the ADC mode where pulse waveform is converted into 10-bit digital data with the sampling frequency of 1 kHz. These data are stored in a buffer and transmitted by 620 kbps to an external monitor through a RF transmitter. The data transmission period of the RF transmitter depends on the operation mode. It is generally 1 minute in the normal situation or 1 ms in the emergency situation. The proposed readout circuit was designed with $0.11{\mu}m$ process technology. The chip area is $460{\times}800{\mu}m^2$. According to measurement, the power consumption is $161.8{\mu}W$ in the count mode and $507.3{\mu}W$ in the ADC mode with the operating voltage of 1 V.

Nanostructured PVdF-HFP/TiO2 Composite as Protective Layer on Lithium Metal Battery Anode with Enhanced Electrochemical Performance (PVdF-HFP/TiO2 나노복합체 보호층을 통한 리튬금속전지 음극의 전기화학적 성능 향상)

  • Lee, Sanghyun;Choi, Sang-Seok;Kim, Dong-Eun;Hyun, Jun-Heock;Park, Young-Wook;Yu, Jin-Seong;Jeon, So-Yoon;Park, Joongwon;Shin, Weon Ho;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.417-425
    • /
    • 2021
  • As the demand for high-capacity batteries increases, there has been growing researches on the lithium metal anode with a capacity (3,860 mAh/g) of higher than that of conventional one and a low electrochemical potential (-3.040 V). In this study, using the anatase phased TiO2 nanoparticles synthesized by hydrothermal synthesis, a PVdF-HFP/TiO2 organic/inorganic composite material was designed and used as an interfacial protective layer for a Li metal anode. As-formed organic/inorganic-lithium composite thin film was confirmed through the crystalline structure and morphological analyses. In addition, the electrochemical test (cycle stability and voltage profile) confirmed that the protective layer of PVdF-HFP/TiO2 composite (10 wt% TiO2 and 1.1 ㎛ film thickness) contributed to the enhanced electrochemical performance of the lithium metal anode (Colombic efficiency retention: 90% for 77 cycles). Based on comparative test with the untreated lithium electrode, it was confirmed that our protective layer plays an important role to stabilize/improve the EC performance of the lithium metal negative electrode.