• Title/Summary/Keyword: 배출액

Search Result 173, Processing Time 0.034 seconds

Efficiency of methane production from pig manure slurry using anaerobic digestor combined with compost filtration bed (퇴비단 여과상이 부착된 혐기소화조를 이용한 돈분뇨 슬러리 메탄생산 효율분석)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Choi, Dong-Yoon;Lee, Dong-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • The characteristics of methane production from pig manure slurry was investigated using anaerobic digestor combined with compost filtration bed. In this study, raw pig manure slurry was digested in mesophilic rectangular digester (effective volume $250m^3$) for 25 days and anaerobic digestion wastewater was filtered through compost filtration bed, which is composed of double layer, sawdust and chaff. The characteristics of anaerobic digestion wastewater were BOD 1,800 mg/L, COD 3,500 mg/L, SS 11,800 mg/L, T-N 1,200 mg/L and T-P 350 mg/L. After the filtration process, the contents of BOD, COD, SS, T-N and T-P of the anaerobic digestion wastewater were reduced by 97%, 62%, 89%, 39% and 57%, respectively. The concentrations of N, $P_2O_5$, and $K_2O$ of the leachate were 1,024, 111 and 407 mg/L, respectively. However, there was no odor emitted from the leachate.

Studies on Mass Production of Intracellularly-Produced Secondary Metabolite, Cyclosporin A by Use of Immobilized Fungal Cells in Stirred-Tank Immobilized Perfusion Reactor System(IPRS) (교반식 perfusion 생물반응기(IPRS)에서 고밀도 고정상 곰팡이 세포를 이용한 세포내 축적 이차대사산물인 Cyclosporin A 대량생산에 관한 연구)

  • 전계택;이태호장용근
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.22-29
    • /
    • 1996
  • Immobilized bioprocess was carried out for continuous production of cyclosporin A (CyA) produced intracellularly as a secondary metabolite by a filamentous fungus, Tolypocladium inflatum. Immobilization procedure for entrapping conidiospores of the producer was significantly simplified by use of a modified immobilization technique. A newly-designed immobilized perfusion reactor system (IPRS) showed good process benefits as demonstrated by the role of the high density immobilized cells as an efficient biomass generator, continuously supplying highly active CyA-producing free cells (1.0g/$\ell$/hr) even at very high dilution rate ($0.1hr^{-1}$). IPRS bioprocess was possible since efficient decantor system developed in our laboratory separated the sloughed-off free cells from the immobilized biomass effectively, thus overcoming wash-out phenomenon frequently encountered in continuous free cell cultures. Furthermore the released-free cells remaining in the bulk solution did not appear to cause substrate mass transfer limitation which was often experienced in suspended mycelial fungal cell fermentations. The primary reason for this was that the suspension broth of the IPRS mainly consisted of roundshaped short mycelial fragments and conidiospores, still remaining Newtonian even at high cell density. In parallel with IPRS bioprocess development, other key factors to be considered necessarily for significant increase in CyA productivity would be strain improvement and medium optimization for the immobilized cells.

  • PDF

Comparative Hepatotoxicity Assessment of Cadmium and Nickel with Isolated Perfused Rat Liver(IPRL) (적출간 관류법을 이용한 카드뮴과 니켈의 간독성 비교)

  • Cha, Bong-Suk;Chang, Sei-Jin;Lee, Jung-Woo;Wang, Seung-Jun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.33 no.1
    • /
    • pp.117-124
    • /
    • 2000
  • Objectives : It is the objective of this study to compare hepatotoxicity of nickel chloride and cadmium chloride with each other through IPRL(Isolated Perfused Rat Liver) method. Methods : Biochemical indicator of hepatic function such as AST(aspartate aminotransferase), ALT(alanine aminotransferase), LDH(lactate dehydrogenase) and perfusion flow rate were used as the indicator of hepatotoxicity. Oxygen consumption rate were used as vability indicator. $300({\pm}50)g$ - weighted rats were allocated randomly to each group($0{\mu}M,\;50{\mu}M,\;200{\mu}M\;NiCl_2\;and\;CdCl_2$ exposure) by 5, totally 25. After Krebs-Ringer bicarbonate butler solution flowed into the penal vein and passed the liver cell, it flowed out of vena cava. Liver was administered with each $NiCl_2\;and\;CdCl_2$ of each concentration and observed with buffer solution sampling time. Butler which got out of liver was sampled and then biochemical indicator of hepatotoxicity was measured. Results : AST, ALT, and LDH in buffer increased with sampling time much more in $CdCl_2$ exposure group than $NiCl_2$ exposure group in both 50 and $200{\mu}M$ and statistical significance w3s verified with 2-way repeated ANOVA. Viability was decreased more and more in all substances during passed time. Conclusions : It is inferred that $CdCl_2$ has stronger hepatotoxicity than $NiCl_2$. IPRL method would be used widely for acute hepatotoxicity when considerating the benefit of it.

  • PDF

Adhesion and Biofilm Formation Abilities of Bacteria Isolated from Dental Unit Waterlines (치과용 유니트 수관에서 분리한 세균의 부착 및 바이오필름 형성 능력)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.18 no.2
    • /
    • pp.69-75
    • /
    • 2018
  • The purpose of our study is to compare the adhesion and biofilm formation abilities of isolates from water discharged from dental unit waterlines (DUWLs). Bacteria were isolated from a total of 15 DUWLs. Twelve isolates were selected for the experiment. To confirm the adhesion ability of the isolates, each isolate was attached to a glass coverslip using a 12-well plate. Plates were incubated at $26^{\circ}C$ for 7 days, and the degree of adhesion of each isolate was scored. To verify the biofilm formation ability of each isolate, biofilms were allowed to form on a 96-well polystyrene flat-bottom microtiter plate. The biofilm accumulations of all isolates formed at $26^{\circ}C$ for 7 days were identified and compared. A total of 56 strains were isolated from 15 water samples including 12 genera and 31 species. Of the 56 isolates, 12 isolates were selected according to the genus and used in the experiment. Sphingomonas echinoides, Methylobacterium aquaticum, and Cupriavidus pauculus had the highest adhesion ability scores of +3 among 12 isolates. Among these three isolates, the biofilm accumulation of C. pauculus was the highest and that of S. echinoides was the third-most abundant. The lowest biofilm accumulations were identified in Microbacterium testaceum and M. aquaticum. Most isolates with high adhesion ability also exhibited high biofilm formation ability. Analysis of adhesion and biofilm formation of the isolates from DUWLs can provide useful information to understand the mechanism of DUWL biofilm formation and development.

Characteristics of Waste Brine from the Salting Process of Chinese Cabbage (배추의 절임공정 중 폐염수의 특성)

  • Yoon, Hye-Hyun;Jeon, Eun-Jae;Sung, Soon-Jung;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.97-101
    • /
    • 2000
  • Major characteristics of waste brine from the repeated salting and rinsing processes of Chinese cabbage for Kimchi were investigated. Salt concentration of brine was increased with the number of successive salting steps from 12% after 1st salting step to 14% after 5th step. Total waste brine which is the representative of wastewater produced from salting process of cabbage showed 6-8% salt concentration. The pH values in all samples decreased with the number of reuse of brine and showed pH 5.9 and pH 5.2 for the mixture of brine for quarter-cut and small-cut cabbage, respectively, after 5th salting process. Soluble solid contents increased with repetition and resulted in 14-16 $^{\circ}Brix$. Total brine showed increased COD values with the number of reuse of brine and 40-50 ppm of COD values for both quarter-cut and small-cut cabbages.

  • PDF

Effect of Waste Nutrient Solution and Fertigation Nutrient Solution on the Growth and Qualities of Tomato Grown by Fertigation (관비재배시 토마토 생육과 품질에 미치는 폐양액과 기존 비료의 효과)

  • Zhang, Cheng Hao;Xu, Zhihao;Kang, Ho-Min;Kim, Il-Seop
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.574-579
    • /
    • 2010
  • Waste nutrient solution (WNS) that was the drained nutrient solution of Horticultural Research Institute of Japan for culture tomato in perlite hydroponics showed $1.9-2.4dS{\cdot}m^{-1}$ of EC and 5.7-7.1 pH from April to July. Although ${NH_4}^+-N$ concentration of WNS decreased remarkably, the other nutrients did not change significantly, as compared with supplied solution. There were no significant differences in plant height, stem diameter, and the other growth characteristics of tomato plants grown by 2 fertigation nutrient solutions; BHF (Bountiful Harvest Fertilizer, 10% of N, 13% of $PO_4$, 13% of K, 0.05% of B, 0.05% of Zn, and 0.0023% of Cu that made in Korea) and Megasol (11% of N, 8% of $PO_4$, 34% of K, 0.032% of Mn, 0.002% of B, 0.048% of Fe, 0.0122% of Zn, and 0.0023% of Cu that made in Belgium.); however, the chlorophyll content of tomato leaf was highest in WNS. The fresh and dry weight of tomato plants were higher in 3 fertigation treatments than irrigation of tap water, while there were no significant differences in fresh and dry weight among the 3 fertigation treatments. The mineral content of tomato leaf also did not show any differences among the 3 fertigation treatments and any regular tendency in all minerals. Total yield, fruit weight and fruit numbers of tomato were higher in WNS, followed by Megasol, BHF and control, although there were not any difference among the 3 fertigation nutrient solution treatments. BER(blossom-end rot)of tomato fruits decreased in fertigation treatments, especially, fruits grown in WNS and BHF showed lower BER. However, the transpiration rate of leaf was higher in control, followed by BHF, WNS and Megasol, The fruit size and soluble solids content was higher in 3 fertigation nutrient treatments than control. These results suggest that WNS can be used for fertigation solution in tomato because yield and quality of tomato fruit grown in WNS fertigation treatment were similar to those in 2 fertigation nutrient solutions treatments(BHF, Megasol).

Theoretical Study on Optimal Conditions for Absorbent Regeneration in CO2 Absorption Process (이산화탄소 흡수 공정에서 흡수액 최적 재생 조건에 대한 이론적 고찰)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1002-1007
    • /
    • 2012
  • The considerable portion of energy demand has been satisfied by the combustion of fossil fuel and the consequent $CO_2$ emission was considered as a main cause of global warming. As a technology option for $CO_2$ emission mitigation, absorption process has been used in $CO_2$ capture from large scale emission sources. To set up optimal operating parameters in $CO_2$ absorption and solvent regeneration units are important for the better performance of the whole $CO_2$ absorption plant. Optimal operating parameters are usually selected through a lot of actual operation data. However theoretical approach are also useful because the arbitrary change of process parameters often limited for the stability of process operation. In this paper, a theoretical approach based on vapor-liquid equilibrium was proposed to estimate optimal operating conditions of $CO_2$ absorption process. Two $CO_2$ absorption processes using 12 wt% aqueous $NH_3$ solution and 20 wt% aqueous MEA solution were investigated in this theoretical estimation of optimal operating conditions. The results showed that $CO_2$ loading of rich absorbent should be kept below 0.4 in case of 12 wt% aqueous $NH_3$ solution for $CO_2$ absorption but there was no limitation of $CO_2$ loading in case of 20 wt% aqueous MEA solution for $CO_2$ absorption. The optimal regeneration temperature was determined by theoretical approach based on $CO_2$ loadings of rich and lean absorbent, which determined to satisfy the amount of absorbed $CO_2$. The amount of heating medium at optimal regeneration temperature is also determined to meet the difference of $CO_2$ loading between rich and lean absorbent. It could be confirmed that the theoretical approach, which accurately estimate the optimal regeneration conditions of lab scale $CO_2$ absorption using 12 wt% aqueous $NH_3$ solution could estimate those of 20 wt% aqueous MEA solution and could be used for the design and operation of $CO_2$ absorption process using chemical absorbent.

Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system (비순환식 양액재배에서 발생하는 폐양액, 폐배지, 폐작물이 환경에 미치는 영향)

  • Park, Bounglog;Cho, Hongmok;Kim, Minsang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2021
  • Hydroponic farming is a method to grow a plant without soil. Plants can be grown on water or hydroponic growing media, and they are fed with mineral nutrient solutions, which are fertilizers dissolved into water. Hydroponic farming has the advantage of increasing plant productivity over conventional greenhouse farming. Previous studies of hydroponic nutrient wastewater from acyclic hydroponic farms pointed out that hydroponic nutrient wastewater contained residual nutrients, and they were drained to a nearby river bank which causes several environmental issues. Also, previous studies suggest that excessive use of the nutrient solution and disposal of used hydroponic growing media and crop wastes in hydroponic farms are major problems to hydroponic farming. This study was conducted to determine the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment by analyzing water quality and soil analysis of the above three factors. Three soil cultivation farms and several hydroponic farms in the Gangwon C region were selected for this study. Samples of water and soils were collected from both inside and outside of each farm. Also, a sample of soil and leachate from crop waste piles stacked near the farm was collected for analysis. Hydroponic nutrient wastewater from acyclic hydroponic farm contained an average of 402 mg/L of total nitrogen (TN) concentration, and 77.4 mg/L of total phosphate (TP) concentration. The result of TP in hydroponic nutrient wastewater exceeds the living environmental standard of the river in enforcement decree of the framework act on environmental policy by 993.7 times. Also, it exceeds the standard of industrial wastewater discharge standards under the water environment conservation act by 6~19 times in TN, and 2~27 times in TP. Leachate from crop waste piles contained 11,828 times higher COD and 395~2662 times higher TP than the standard set by the living environmental standard of the river in enforcement decree of the framework act on environmental policy and exceeds 778 times higher TN and 5 times higher TP than the standard of industrial wastewater discharge standards under the water environment conservation act. For more precise studies of the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment, additional information regarding a number of hydroponic farms, arable area(ha), hydroponic farming area, seasonal, weather, climate factor around the river, and the property of the area and farm is needed. Analysis of these factors and additional water and soil samples are needed for future studies.

CO2 Emission Structure Analysis of Industrial Sector with Environmental Input-Output Table 2005 (환경산업연관표 2005를 이용한 산업부문의 이산화탄소(CO2) 배출 분석)

  • Kim, Yoon Kyung
    • Environmental and Resource Economics Review
    • /
    • v.20 no.1
    • /
    • pp.1-31
    • /
    • 2011
  • By employing Environmental Input-Output Table 2005, which has 76 intermediate sector and 21 energy sources, this paper analyses the flow of energy demand and $CO_2$ after estimating an induced $CO_2$ emissions from 76 industrial sectors. Index of $CO_2$ intensity($CO_2/GDP$) and other index of $CO_2$ intensity($CO_2/calory$) showed that final demand sector uses more high calory energy source. Intermediate sector used less environmental friendly energy source and emit more $CO_2$ at same calory. Industries those has high induced $CO_2$ emissions are Thermal Power($32.587CO_2-g/Won$), Cement($10.370CO_2-g/Won$), Road Transportation($7.255CO_2-g/Won$), Cokes and Other Coal Products($5.791CO_2-g/Won$), Steam and Hot water supply, Sewage, Sanitary services($4.575CO_2-g/Won$). It is shown that industry such as Iron and Steel which has low $CO_2$ intensity, high backward linkage effect and high forward linkage effect makes high induced $CO_2$ emissions. Environmental load and $CO_2$ emissions in overall economy will decrease when not high $CO_2$ intensity industry but also low $CO_2$ intensity industry makes lower $CO_2$ intensity.

  • PDF

The Aeration to Improve Manganese and Chloroform of Effluent at Sludge Thickener of the Conventional Water Treatment Plant (정수장 슬러지 폭기가 방류수 망간 및 클로로포름에 미치는 영향)

  • Choi, Ilgyung;Beak, Inho;Jeong, Chanwoo;Lee, Sungjin;Park, Jungwook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.113-118
    • /
    • 2014
  • So many nationwide drinking water treatment plants are under much difficulties by new reinforced discharged effluent standards. Generally, the sludge at thickener should be retended for a long time during usual days. Sometime, the soluble manganese and chloroform may be formed under the anaerobic condition in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. It was necessary to improve the operation conditions and process itself in order to meet water quality standard recently reinforced. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. Sludge aeration prevent particle oxidated Manganese eluting soluble de-oxidated Manganese, excrete formated Chloroform from effluent to air, and improve sludge settling through homogenized sludge particle. We aerated sludge at the conventional water treatment plant, measured Manganese and Chloroform of clarified water at upper sludge, and solid-fluid interface height of sludge in mass cylinder. As a result, contaminant's concentrations of the final effluent was much decreased : 41% of manganese, approximately 62% of chloroform and 35% of sludge volume, compared with non-aeration sludge.