• Title/Summary/Keyword: 배기성능

Search Result 783, Processing Time 0.026 seconds

Development of 1×16 Thermo-optic MZI Switch Using Multimode Interference Coupler (다중모드 간섭현상을 이용한 1×16 마하젠더 스위치 개발)

  • Kim, Sung-Won;Hong, Jong-Kyun;Lee, Sang-Sun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.469-474
    • /
    • 2006
  • A $1{\times}16$ thermo-optic switch with small excess loss using multimode interference(MMI) couplers is designed, fabricated, and measured. This paper introduces the proposed $1{\times}16$ thermo-optic switch, and discusses the measurement results. The $1{\times}16$ thermo-optic switch is farmed as 4-stage which consists of 15 unit devices. The unit devices are the $2{\times}2$ thermo-optic switches with Mach-Zehnder interferometer(MZI) structure. The characteristics of the $1{\times}16$ thermo-optic switch depends strongly on each unit device. The unit deviceconsists of two 3-dB general interference MMI couplers and two single mode waveguide arms as a phase shifter. First of all, the 3-dB optical splitter and $2{\times}2$ MZI thermo-optic switch have been tested to confirm the characteristics of the unit devices of the $1{\times}16$ MZI thermo-optic switch. Using the measurement results of the unit devices, the $1{\times}16$ MZI thermo-optic switch can be produced with better characteristics. The resultant structure of the MMI coupler with the optical light source of wavelength of 1550nm for the $1{\times}16$ thermo-optic switch is that the width and the optimized length are $25{\mu}m\;and\;1580{\mu}m$, respectively. The smallest excess loss fur the unit device is -0.5dB and the average excess loss is -0.7dB.

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.

Experimental Study on Reduction of Particulate Matter and Sulfur Dioxide Using Wet Electrostatic Precipitator (습식전기집진기를 활용한 입자상 물질 및 황산화물 저감 성능에 관한 실험적 연구)

  • Kim, Jong-Lib;Oh, Won-Chul;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2021
  • This experimental study aims to investigate the use of a wet electrostatic precipitator as a post-treatment device to satisfy the strict emission regulations for sulfur oxides and particulate matter (PM). The inlet/outlet of a wet electrostatic precipitator was installed in a funnel using a marine four-stroke diesel engine (STX-MAN B&W) consuming marine heavy fuel oil (HFO) with a sulfur content of about 2.1%. Measurements were then obtained at the outlet of the wet electrostatic precipitator; an optical measuring instrument (OPA-102), and the weight concentration measurement method (Method 5 Isokinetic Train) were used for the PM measurements and the Fourier transform infrared (FT-IR; DX-4000) approach was used for the sulfur oxide measurements. The experimenst were conducted by varying the engine load from 50%, to 75% and 100%; it was noted that the PM reduction efficiency was a high at about 94 to 98% under all load conditions. Additionally, during the process of lowering the exhaust gas temperature in the quenching zone of the wet electrostatic precipitator, the sulfur dioxide (SO2) values reduced because of the cleaning water, and the reduction rate was confirmed to be 55% to 81% depending on the engine load.

A study on the development and applicability of fire risk assessment method for small road tunnels passing only small cars (소형차 전용 도로터널의 화재 위험도 평가기법개발 및 적용성에 관한 연구)

  • Ryu, Ji-Oh;Choi, Pan-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.917-930
    • /
    • 2018
  • A quantitative risk assessment method for quantitatively evaluating the fire risk in designing a road tunnel disaster prevention facilities has been introduced to evaluate the appropriateness of a disaster prevention facility in a large tunnel through which all vehicle types pass. However, since the quantitative risk assessment method of the developed can be applied only to the large sectional area tunnels (large tunnels), it is necessary to develop a quantitative risk assessment method for road tunnels passing only small cars which has recently been constructed or planned. In this study, fire accidents scenarios and quantitative risk assesment method for small road tunnels through small cars only which is based on the methods for existing road tunnels (large tunnels). And the risk according to the distance between cross passage is evaluated. As a result, in order to satisfy the societal risk assessment criteria, the distance of the appropriate distance between cross passages was estimated to be 200 m, and the effect of the ventilation system of the large port exhaust ventilation system was quantitatively analyzed by comparing the longitudinal ventilation system.

Fundamental study on sound absorption of a dental hand piece using micro-porous EPP substrate processed by UV laser (UV 레이저응용 마이크로 다공성 EPP 기판의 치과용 핸드피스 흡음성능에 관한 기초연구)

  • You, Dong-Bin;Shin, Myung-Ho;Byun, Hyo-Jin;Choi, Do-Jung;Sung, Kuo-Won;Ma, Yong-Won;Shin, Bo-Sung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.158-164
    • /
    • 2019
  • Recently many studies to reduce the noise of dental hand piece which generate inevitably mechanical sound to offend to the ear of a patient have been spotlighted. Generally, methods of adding a sound absorbing material inside the exhaust valve, air pump of machine or automobile are widely reported as optimal way to reduce the mechanical noise. In this paper we studied a new UV laser aided manufacturing of micro-porous structure of EPP substrate and applied dental hand piece to improve the efficiency of sound absorption. A lot of micro-sized pores were fabricated with UV laser processing on the surface of sliced EPP substrate. From fundamental experiments, more high-performance of micro-porous EPP substrate has finally demonstrated for sound-absorbing structure of the micro muffler inside dental hand piece, which actually has the excellent potential to apply a lot of potable machine.

A Study on the Supply Methods of Heating Energy in Rural Regions by Using Wood Chips -Focusing on the Production Method of Wood Chips for Fuel though Natural Drying Method- (목재칩을 이용한 농촌지역 난방에너지 공급 방법 연구 -자연건조 방식을 통한 연료용 목재칩 생산방법을 중심으로-)

  • An, Byeong-IL;Ko, Kyoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.401-408
    • /
    • 2021
  • Supplies of wood chips for fuel tend to increase owing to energy decentralization and new renewable energy policies. This study suggests a technical method that is necessary in order to supply heating energy to rural regions by using wood chips for fuel. Therefore, this study investigates the effects of natural drying methods for eight months by installing a drying facility with natural ventilation capable of loading 10 tons of wood chips, and which derive a natural drying method based on this to meet the quality standards of wood chips for fuel. The study results confirm that it is possible to produce wood chips for high-quality fuel with water content at 20% or less after around 90 days of drying, provided that a drying facility with natural ventilation is equipped with materials that can be procured easily in rural regions. It is also possible to block the proliferation and fermentation of molds that affect the quality of wood chips, provided that intake and exhaust systems adhering to standards are equipped.

Combustion Characteristics and On-site Performance Test of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분예혼합 GT 연료노즐의 연소특성 및 발전플랜트 실증)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June;Min, Kyungwook;Kang, Do Won
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.22-28
    • /
    • 2021
  • Combustion characteristics were examined experimentally for a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. An original model and a variant with a different fuel injection pattern are tested to compare their combustion characteristics such as NOx, CO and stability in pressurized conditions with single burner-flame and in an ambient multi-flame conditions with multi-burners. Test results show that NOx emissions are smaller for the variant, whose number of fuel holes is reduced with the same total area of fuel holes, in ambient and pressurized single-flame conditions with single burner, which results from enhanced fuel/air mixing due to a higher penetration of fuel into the air stream. The multi-burnerflame test results show that NOx emissions are smaller for the variant due to reduced flame interactions, which, on the contrary, slightly reduces the stability margin. On-site test results fromin an actual power plants also show that NOx emissions are reduced for the variant, compared with the original one, which is in agreement with the lab test results stated above.

Regenerating Condition Optimization of NGCC Combined Carbon Capture Process Simultaneously Considering Absorption and Regeneration Rates (흡수율과 재생율을 동시 고려한 천연가스복합발전 공정 연계 이산화탄소 포집 공정의 재생 조건 최적화)

  • Jeong Hun Choi;Young-Hwan Chu
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.368-377
    • /
    • 2023
  • Natural Gas Combined Cycle(NGCC) recently receives lots of attention as an attractive form of power plants by virtue of its low carbon emission compared with coal-fired power plant. Nevertheless, it also needs carbon capture process since it is difficult to completely suppress carbon emission even for the NGCC. A simulation study has been performed to optimize operating condition of a carbon capture process using MEA considering low partial pressure of carbon dioxide in NGCC emission gas. For accurate optimization, overall process model including both NGCC and the carbon capture process has been built with a simulation software. Then, optimization in which various performance indices such as carbon dioxide absorption rate, solvent regeneration rate and power loss in the NGCC are simultaneously reflected has been done. Especially, it is noticeable that this study focuses on not only the amount of energy consumption but also the absorption and regeneration performance of carbon capture process. The best result considering all the performance indices has been achieved when the reboiler temperature is 120 ℃ and the reason has been analyzed.

A Study on the Smoke Removal Equipment in Plant Facilities Using Simulation (시뮬레이션을 이용한 플랜트 시설물 제연설비에 관한 연구)

  • Doo Chan Choi;Min Hyeok Yang;MIn Hyeok Ko;Su Min Oh
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2024
  • Purpose: In this study, in order to ensure the evacuation safety of plant facilities, we analyze the relationship between the height of smoke removal boundary walls, the presence or absence of smoke removal equipment, and evacuation safety. Method: Using fire and evacuation simulations, evacuation safety was analyzed through changes in the height of the smoke removal boundary wall, air supply volume and exhaust volume according to vertical dista. Result: In the case of visible drawings, if only 0.6m of boundary wall is used, the time below 5m reaches the shortest, and 1.2m of boundary width is 20% longer than when using smoke removal facilities. In the case of temperature, 1.2m is 20% longer than 0.6m when only the boundary width is used without smoke removal facilities. Conclusion: It was found that increasing the length of the smoke removal boundary wall could affect visibility, and installing a smoke removal facility would affect temperature. Therefore, it is determined that an appropriate smoke removal plan and smoke removal equipment should be installed in consideration of the process characteristics.

Research on Improvement of CH4 Reduction Performance of NGOC for CNG Bus (CNG 버스용 NGOC의 CH4 저감 성능 향상을 위한 연구)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.708-715
    • /
    • 2017
  • Recently, in order to meet the stricter emission regulations, the proportion of after-treatments for vehicles and vessels has been increasing gradually. The objective of this study is to investigate the improvement of $CH_4$ reduction ability of natural gas oxidation catalyst (NGOC), which reduces toxic gases emitted from CNG buses. Thirteen NGOCs were prepared, and the conversion performance of noxious gases according to the type of supports, the loading amount of noble metal, and surfactant and aging were determined. Support Zeolite supported on No. 3 $NGOC(1Pt-1Pd-3MgO-3CeO_2/(46TiO_2+23Al_2O_3+23Zeolite)$ is an anionic alkali metal/earth metal component that improved the oxidation reactivity between CO and NO and noble metal dispersion, and thus enhanced the $CH_4$ reduction ability. As the loading amount of Pd, a noble metal with a high selectivity to $CH_4$, was increased, the number of reaction sites was increased and the ability to reduce $CH_4$ was improved. No. 11 $NGOC(1Pt-1Pd-3MgO-3CeO_2/(Z20+Al80)$(pH=8.5), to which nitrate surfactant had been added, exhibited well dispersed catalyst particles with no agglomeration and improved the $CH_4$ reduction ability by 5-15%. The $NGOC(2Pt-2Pd-3Cr-3MgO/90Al_2O_3)$(48h aging), which was mildly thermal aged for 48h, increased the $CH_4$ reduction ability to about 10% or less as compared with No. 12 NGOC(Fresh).