• Title/Summary/Keyword: 배기가스 순환

Search Result 213, Processing Time 0.028 seconds

Characteristic Study of LNG Combustion in the mixture of $O_2/CO_2$ ($O_2/CO_2$ 혼합조건에 따른 LNG 연소특성해석)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.647-653
    • /
    • 2007
  • The ultimate objective of this study is to develop a reliable oxygen-enriched combustion techniques especially for the case of the flue gas recycling in order to reduce the $CO_2$ emissions from practical industrial boilers. To this end a systematic numerical investigation has been performed, as a first step, for the resolution of the combusting flame characteristics of lab-scale LNG combustor. One of the important parameters considered in this study is the level of flue gas recycling calculated in oxygen enriched environment. As a summary of flame characteristics, for the condition of 100% pure $O_2$ as oxidizer without any flue gas recycling, the flame appears as long and thin laminar-like shape with relatively high flame temperature. The feature of high peak of flame temperature is explained by the absence of dilution and heat loss effects due to the presence of $N_2$ inert gas. The same reasoning is also applicable to the laminarized thin flame one, which is attributed to the decrease of the turbulent mixing. These results are physically acceptable and consistent and further generally in good agreement with experimental results appeared in open literature. As the level of $CO_2$ recycling increases in the mixture of $O_2/CO_2$, the peak flame temperature moves near the burner region due to the enhanced turbulent mixing by the increased amount of flow rate of oxidizer stream. However, as might be expected, the flue gas temperature decreases due to presence of $CO_2$ gas together with the inherent feature of large specific heat of this gas. If the recycling ratio more than 80%, gas temperatures drop so significantly that a steady combustion flame can no longer sustain within the furnace. However, combustion in the condition of 30% $O_2/70% $ $CO_2$ can produce similar gas temperature profiles to those of conventional combustion in air oxidizer. An indepth analyses have been made for the change of flame characteristics in the aspect of turbulent intensity and heat balance.

Experimental Evaluation of EGR and Fuel Injection Pressure on Combustion, Size-resolved Nano-particle and NOx Emissions Characteristics in an Advanced Light-duty Diesel Engine (승용 디젤 엔진의 배기가스재순환 및 연료 분사 압력 제어전략에 따른 연소, 입자상 물질 및 질소 산화물 배출 특성에 관한 연구)

  • You, Jung Been;Ko, Ahyun;Jang, Wonwook;Baek, Sungha;Jin, Dong Young;Myung, Cha-Lee;Park, Simsoo;Han, Jung Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.8-15
    • /
    • 2014
  • In order to satisfy stringent future emission regulation in diesel engines, systematic approaches to mitigate the harmful exhaust emissions were developed, such as engine hardware, fuel injection equipment, engine control, and after-treatment system. In this study, to improve the nano-particle and NOx emissions from a state-of-the-arts diesel engine, effect of various EGR and fuel injection pressure with combustion analysis were evaluated. Size-resolved nano-particle and NOx emissions showed trade-off characteristics with various EGR rate and increment of fuel injection pressure.

A Study on the Residual Gas Fraction in Cylinder by the Adjustment of Variable Valve Timing with Volumetric Efficiency (체적효율을 고려한 가변밸브 개폐시기의 조정에 의한 실린더내 잔류가스량에 관한 연구)

  • 남정길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.82-88
    • /
    • 2001
  • The EGR is needed fur one of various strategies to reduce NOx emission. But to get the proper EGR rate, the intake and exhaust system become complicated. That is a reason why we consider using the internal EGR system. The internal EGR is a system which reduces NOx by controling the residual gas fraction in cylinder by changing valve timing and valve lift of intake and exhaust. In this paper, characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust in the 4 stroke-cycle diesel engine. Volumetric efficiency and residual gas fraction were calculated by the method of characteristics. As the results, residual gas fraction and volumetric efficiency in cylinder by variable valve timing were visualized.

  • PDF

The Effect of Cetane Number on Exhaust Emissions in Low-temperature Diesel Combustion (저온 디젤 연소에서 세탄가가 배기가스 특성에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2011
  • This study is to investigate the effect of the cetane number in ultra low sulfur diesel fuel on combustion characteristics and exhaust emissions at 1500 rpm and 2.6bar BMEP in low-temperature diesel combustion with 1.9L common rail direct injection diesel engine. Low-temperature diesel combustion was achieved by adopting external high EGR rate with the strategic injection control without modification of engine components. Test fuels are ultra low sulfur diesel fuel (sulfur less than 12 ppm) with two cetane numbers (CN), i.e., CN30 and CN55. For the CN30 fuel, as a start of injection (SOI) timing is retarded, the duration of an ignition delay was decreased while still longer than $20^{\circ}CA$ for all the SOI timings. In the meanwhile, the CN55 fuel showed that an ignition delay was monotonically extended as an SOI timing is retarded but much shorter than that of the CN30 fuel. The duration of combustion for both fuels was increased as an SOI timing is retarded. For the SOI timing for the minimum BSFC, the CN30 produced nearly zero PM much less than the CN55, while keeping the level of NOx and the fuel consumption similar to the CN55 fuel. However, the CN30 produced more THC and CO than the CN55 fuel, which may come from the longer ignition delay of CN30 to make fuel and air over-mixed.

Energy conservation effects in drying process reusing exhaust gas (배기가스 순환이용 건조공정의 에너지절약 효과)

  • Chun, W.P.;Lee, K.W.;Park, K.H.;Lee, K.G.;Kim, H.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.215-220
    • /
    • 2000
  • 건조는 열풍, 스팀 및 전자기파 등의 직접 또는 간접적인 에너지를 투입하여 최종 제품, 가공, 후처리 과정에서 수분을 제거하는 필수 단위공정으로서 화공, 섬유, 식품, 제지·목재, 금속부품 및 폐기물 등에 이르기까지 모든 산업의 생산과정에서 널리 사용되고 있다. 건조공정은 국내 총에너지소비량의 1.2%('95년기준 1,413천TOE), 산업부문 에너지소비량의 2.2%를 소비하는 에너지다소비 장치의 하나이다. 실제론 산업분야 건조설비 사용업체의 에너지사용 비중 중에서 건조공정의 에너지사용 비중이 30%를 초과하고 있으나, 대부분의 건조공정의 에너지 이용효율이 50%이하로서 매우 낮은 실정이다.(중략)

  • PDF

The Effects of EGR and EGR Induction Point on Combustion Noise of a Passenger Diesel Vehicle (승용 디젤엔진의 EGR과 Induction위치에 따른 소음 영향)

  • Kang, Sang-Kyu;Kim, Jae-Heon;Baek, Sung-Nam;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.393-396
    • /
    • 2007
  • EGR is well established and efficient means to reduce NOx emissions. The increase of EGR rate affects the ignition delay of the combustion due to the lower oxygen availability. The increasing of the ignition delay period causes large combustion noise. In this study, the effects of EGR and Induction Point on combustion noise are investigated by measuring cylinder pressure and noise. As a result, The Combustion noise is markedly increased under the application of EGR. The increased premixed distance by displacing EGR Induction point in flow direction causes the uniform EGR distribution and the modulation level of the combustion noise is reduced slightly.

  • PDF

An Experimental Study on the Combustion Characteristics with Fuel Injection System in the Diesel Engine (디젤엔진의 연료분사계가 연소특성에 미치는 영향에 관한 실험적 연구)

  • 윤천한;김경훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1244-1249
    • /
    • 2001
  • The characteristics of engine performance with fuel injection system in D.I. diesel engine were studied in this paper A fuel injection system has an important role in the performance and emission gas in a diesel engine. In this paper, an experimental study has been performed to verify the effect of the performance and the emission gas with the factors such as diameters of an injection nozz1e hole, diameters of an injection pipe and injection timing in the fuel injection system. The authors have obtained the results that optimizing the factors of fuel injection system is siginificant to enhance the performance of the engine system and consumption ratio of fuel, smoke, and NOx.

  • PDF

An Experimental Study on the Simultaneous Reduction of Smoke and NOx by Oxygenated Fuel Additives in DI Diesel Engine (직접분사식 디젤기관에서 함산소연료 첨가에 의한 매연과 NOx 동시 저감에 관한 실험적 연구)

  • ;近久 武美
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.106-114
    • /
    • 1996
  • Extensive experiments were conducted to investigate the emission of DI diesel engine by using DMC(dimethyl carbonate) as an oxygenated fuel additives. The results indicate that smoke reduces almost linearly with fuel oxygen contents. Reductions of HC and CO were attained noticeably, while a small increase in NOx was encountered concurrently. The effective reduction in smoke with DMC was maintained with the presence of CO2, which suggested a low NOx and smoke operation could be obtained in combination of using oxygenated fuel and EGR. Further experiment was conducted a thermal cracking set-up for mechanism studies.

  • PDF

A Study on the Characteristics of the Electronic EGR Valve for Gasoline Engine (가솔린엔진용 E-EGR 밸브 특성에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.127-133
    • /
    • 2008
  • Since the 1960's, exhaust gas recirculation(EGR) has been used effectively in spark ignition(SI) engines to control the exhaust emissions of the oxides of nitrogen(NOx). The most important requirements for the application of EGR systems to conventional SI engines are controllable flow rate and good dynamic response. In order to evaluate the characteristics of the electronic EGR valve, a test bench which is consisted of blower, heater, air flow meter and driving unit for electronic EGR valve was set up to simulate engine operating conditions. During the tests, the valve actuation parameters were controlled and the valve lifts and flow rates were measured to infer the characteristics of EGR valve. The results confirmed the capabilities of mathematical analysis and it seems that the correction for the valve lift and potentiometer output is necessary to achieve precise control of EGR rates.

Characteristics of Low Temperature Combustion in Single Cylinder Engine by High EGR Rate (단기통 엔진에서 대유량 EGR을 통한 저온 연소 특성)

  • Cho, Sang-Hyun;Oh, Kwang-Chul;Lee, Chun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.79-85
    • /
    • 2009
  • Low temperature combustion regime for the simultaneous reduction of nitrogen oxides ($NO_x$) and paticulate matter (PM) is demonstrated in single cylinder engine at various operating parameters, such as EGR rate, injection timing, EGR temperature, amount of fuel and swirl rate. Low temperature combustion is accomplished by high exhaust gas recirculation (EGR) rate in this study. Generally, the emission of $NO_x$ almost completely disappears and PM significantly increases in the first decreasing regime of oxygen concentration but after peaking about 10~12% oxygen concentration, PM then decreases regardless of fuel injection quantity. Low temperature combustion regime was extended by low EGR temperature, high injection pressure and low amount of fuel.